
االتكنـولوجيــجـامعة هواري بومـدين للعلـوم و
 Université des Sciences et de la Technologie Houari Boumediene

 Faculté d’Electronique et d’Informatique
 D é p a r t e m e n t d ’I n f o r m a t i q u e

Concours d’accès au Doctorat 3 ième Cycle Informatique 2019 – 2020

1

Le 26/10/2019
Matière 1 : Algorithmique avancée et complexité,

 Coefficient 1, durée 1 h 30
(Spécialités : IA, MFA, SIGL)

Exercice 1 : (8 points)

a. Donnez les définitions des notations Landau Ω , Θ et O.
Réponse :
O(g(n)) = { f :IN →IN | ∃ c>0 et n0 ≥ 0 tels que 0 ≤ f(n) ≤ c.g(n) ∀ n ≥ n0 }
Ω(g(n)) = { f :IN → IN | ∃ c>0 et n0 ≥ 0 tels que 0 ≤ c.g(n) ≤ f(n) ∀ n ≥ n0 }
Θ(g(n)) = { f :IN →IN | ∃ c1>0, c2>0 et n0 ≥0 tels que 0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n) ∀ n≥ n0 }

b. Les affirmations ci-dessous sont-elles vraies ou fausses ? Si vous pensez qu’une affirmation est
fausse, indiquez pourquoi et corrigez l’affirmation. (Reproduire, sur la copie, le tableau ci-
dessous et le compléter).

Affirmation

Vraie
ou

Fausse
?

Affirmation correcte

Si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔(𝑛𝑛) ∈
O�𝑓𝑓(𝑛𝑛)�.

fausse
si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�,

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔(𝑛𝑛) ∈ Ω�𝑓𝑓(𝑛𝑛)�.
Soit 𝑆𝑆(𝑛𝑛) ∈ O�𝑓𝑓(𝑛𝑛)�,𝑇𝑇(𝑛𝑛) ∈
O�𝑔𝑔(𝑛𝑛)� Si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�,
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆(𝑛𝑛) + 𝑇𝑇(𝑛𝑛) ∈ O�𝑓𝑓(𝑛𝑛)�.

fausse
Soit 𝑆𝑆(𝑛𝑛) ∈ O�𝑓𝑓(𝑛𝑛)�,𝑇𝑇(𝑛𝑛) ∈
O�𝑔𝑔(𝑛𝑛)� Si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�,
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆(𝑛𝑛) + 𝑇𝑇(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�.

Si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑛𝑛) +
𝑔𝑔(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�

vrai

La meilleure borne asymptotique de
𝑂𝑂(𝑓𝑓(n)) + 𝑂𝑂(𝑔𝑔(n)) est 𝑂𝑂(𝑓𝑓(n) + 𝑔𝑔(n)) fausse

𝑂𝑂(𝑓𝑓(n)) + 𝑂𝑂(𝑔𝑔(n)) =
𝑂𝑂(max(𝑓𝑓(n), 𝑔𝑔(n)))

Si 𝑔𝑔 = 𝑂𝑂(𝑓𝑓(n)) et ℎ = 𝑂𝑂(𝑔𝑔(n)) alors ℎ
= 𝑂𝑂(𝑓𝑓(n)) Vrai

5𝑛𝑛 + 8𝑛𝑛2 + 100𝑛𝑛3 ≠ 𝑂𝑂(𝑛𝑛4) fausse 5𝑛𝑛 + 8𝑛𝑛2 + 100𝑛𝑛3 = 𝑂𝑂(𝑛𝑛4)
100𝑛𝑛 + log 𝑛𝑛 = Θ(𝑛𝑛 + (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2) vrai

√𝑛𝑛 = 𝑂𝑂((𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2) fausse √𝑛𝑛 = Ω((𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2)

2

Exercice 2 : (12 points) Tri par insertion
Le tri par insertion d’un tableau T[1..n] de n éléments consiste à insérer chaque élément à sa place. Le premier
élément constitue, à lui tout seul, une suite triée de longueur 1. On range ensuite le second élément pour
constituer une suite triée de longueur 2, puis on range le troisième élément pour avoir une suite triée de
longueur 3 et ainsi de suite...
Le principe du tri par insertion est donc d'insérer à la i-ème itération le i-ème élément à la bonne place. Il faut
pour cela trouver où l'élément doit être inséré en le comparant aux autres, puis décaler les éléments afin de
pouvoir effectuer l'insertion.

 j i
T

 Éléments triés [1..i-1] éléments non triés [i..n]

1. Ecrire l’algorithme « Tri_insertion1 » du tri par insertion tel que décrit précédemment.
Donner sa complexité en nombre de comparaisons.

Réponse :
Procédure tri_insertion1(E/T : tableau[n] d’entiers, entier n)
var i,j, x :entier ;
Début
 pour i ← 2 à n faire
 x ← T[i] ;
 j ← i ;
 tantque (j > 0 et T[j - 1] > x) faire T[j] ← T[j - 1] ; j ← j – 1 ; fait ;
 T[j] ← x ;
 fait;
Fin;
Ou bien
Procédure tri_insertion1(E/T : tableau[n] d’entiers, entier n)
var i,j, x :entier ;
Début
 pour i ← 2 à n faire
 j←1 ;
 tantque (j<i et T[i]>T[j]) faire j←j+1 ; fait ;
 k←i ;
 x←T[i] ;
 tantque (k > j) faire T[k] ← T[k-1] ; k←k-1 ; fait ;
 T[j] ← x ;
 fait;
Fin;
Complexité de l’ordre de O(n2) car au pire cas pour i de 2 à n on fait i-1 comparaisons ce qui donne
∑ (𝑖𝑖 − 1) = 1 + 2 + ⋯+ 𝑛𝑛 − 1 = 𝑛𝑛(𝑛𝑛−1)

2
𝑛𝑛
𝑖𝑖=2 ~ 𝑂𝑂(𝑛𝑛2)

2. Puisque la suite d’éléments, dans laquelle on cherche le rang d’insertion, est triée (T[1..i-1]),

on propose d’utiliser la recherche dichotomique.
a. Donner l’algorithme « Tri_insertion2 ».

3

Fonction Dichotomie (E/ T :tableau ; i :entier) :entier ;
Var d, f, m :entier ;
début
 d←1 ; f←i-1 ;
 tantque (d≤f) faire
 m←(d+f)/2 ;
 si (T[i]>T[m]) alors d←m+1
 sinon si (T[i]< T[m]) f←m-1
 sinon retourner m ;
 fsi
 fait ;
 retourner m ;
fin ;
Procédure tri_insertion2(E/T : tableau[n] d’entiers, entier n)
var i,j, x :entier ;
Début
 pour i ← 2 à n faire
 j←Dichotomie(T, i-1) ;
 k←i ;
 x←T[i] ;
 tantque (k > j) faire T[k] ← T[k-1] ; k←k-1 ; fait ;
 T[j] ← x ;
 fait;
Fin;

b. Donner sa complexité en nombre de comparaisons.

Réponse : A chaque étape du tri, le nombre de comparaisons est égal à ⌊log2(𝑖𝑖 − 1)⌋ + 2, soit dans
tous les cas au total ∑ ⌊log2(𝑖𝑖 − 1)⌋ + 2𝑛𝑛 − 2𝑛𝑛

𝑖𝑖=2 comparaisons. La complexité est égal à O(𝑛𝑛log2 𝑛𝑛).
Toutefois, cette méthode perd beaucoup de son intérêt puisque l’insertion nécessite toujours un
décalage linéaire. La complexité de ce tri reste donc O(n2).

c. La complexité du tri a-t-elle été améliorée ?

Cette variante est à peine plus efficace que le tri par insertion séquentielle. Donc pas d’amélioration.

3. Soit l’algorithme récursif suivant :
Procédure Tri_insertion3(E/ T : tableau[n] entier ; p : entier)
Var k : entier ;
Début
 Si (p>0) alors
 Tri_insertion3(T, p-1) ; kp ;
 tantque (k>1 et T[k-1]>T[k]) faire permuter(T[k-1], T[k]) ; kk-1 ; fait ;
 fsi ;
Fin ;

4

L’appel initial se fait par Tri_insertion3(T, n).
a. Dérouler l’algorithme avec n=8 et T=[6| 3| 7| 4| 2| 8| 1| 5]

Réponse :
6 3 7 4 2 8 1 5
3 6 7 4 2 8 1 5
3 6 7 4 2 8 1 5
3 6 4 7 2 8 1 5
3 4 6 7 2 8 1 5
3 4 6 2 7 8 1 5
3 4 2 6 7 8 1 5
3 2 4 6 7 8 1 5
2 3 4 6 7 8 1 5
2 3 4 6 7 1 8 5
2 3 4 6 1 7 8 5
2 3 4 1 6 7 8 5
2 3 1 4 6 7 8 5
2 1 3 4 6 7 8 5
1 2 3 4 6 7 8 5
1 2 3 4 6 7 5 8
1 2 3 4 6 5 7 8
1 2 3 4 5 6 7 8

b. Donner l’équation de récurrence qui décrit le temps d’exécution de l’algorithme.

Résoudre l’équation.

Réponse :

L’équation de récurrence : � 𝑇𝑇(0) = 0
 𝑇𝑇(𝑛𝑛) = 𝑇𝑇(𝑛𝑛 − 1) + (𝑛𝑛 − 1)

𝑇𝑇(𝑛𝑛) = 𝑇𝑇(𝑛𝑛 − 2) + (𝑛𝑛 − 2) + (𝑛𝑛 − 1)
𝑇𝑇(𝑛𝑛) = 𝑇𝑇(𝑛𝑛 − 3) + (𝑛𝑛 − 3) + (𝑛𝑛 − 2) + (𝑛𝑛 − 1)

…

𝑇𝑇(𝑛𝑛) = 𝑇𝑇(𝑛𝑛 − 𝑛𝑛) + (𝑛𝑛 − 𝑛𝑛) + (𝑛𝑛 − (𝑛𝑛 − 1)) + ⋯+ (𝑛𝑛 − 2) + (𝑛𝑛 − 1)
𝑇𝑇(𝑛𝑛) = 0 + 1 + 2 + ⋯+ (𝑛𝑛 − 2) + (𝑛𝑛 − 1)

𝑇𝑇(𝑛𝑛) = �𝑘𝑘 =
𝑛𝑛−1

𝑘𝑘=0

𝑛𝑛(𝑛𝑛 − 1)
2

~𝑂𝑂(𝑛𝑛2)

4. Que constatez-vous (comparer les trois algorithmes) ?

Réponse : Tous les tris ont même complexité mais on va préférer Tri_insertion2 car le nombre
de comparaison est un peu meilleur que les 2 autres.

