Leaglgadill ¢ gplell (symagy @ slpa draly

: Université des Sciences et de la Technologie Houari Boumediene
¥l s Fece Faculté d’Electronique et d’Informatique
usTHE Département d’Informatique

Concours d’acces au Doctorat 3 ieme Cycle Informatique 2019 — 2020

Le 26/10/2019
Matiere 1 : Algorithmique avancée et complexite,
Coefficient 1, durée 1 h 30
(Specialités : 1A, MFA, SIGL)

Exercice 1 : (8 points)
a. Donnez les définitions des notations Landau Q , © et O.

Réponse :

Oo@(n)={f:IN—IN| 3c>0etno>0 telsque 0=<f(n)<c.gn) Vn=>no }
Qn))={f:IN—>IN|3c>0etny>0 tels que 0<c.gn) <f(n) Vn>no }

O(g(n)) = { T:IN —IN| 3 c1>0, c2>0 et no >0 tels que 0 < c.g(n) <f(n) <c..g(n) Vn>no}

b. Lesaffirmations ci-dessous sont-elles vraies ou fausses ? Si vous pensez qu’une affirmation est
fausse, indiquez pourquoi et corrigez I’affirmation. (Reproduire, sur la copie, le tableau ci-
dessous et le compléter).

Vraie
Affirmation Fa(l)Jl;se Affirmation correcte
2
Si f(n) € 0(g(n)), alors g(n) € fausse si f(n) € 0(g()),
o(f(m). alors g(n) € Q(f ().
Soit S(n) € O(f(n)),T(n) € Soit S(n) € O(f(n)),T(n) €
O(g(n)) Sif(n) € O(g(n)), fausse O(g(n)) Si f(n) € O(g(n)),
alors S(n) + T(n) € O(f(n)). alors S(n) + T(n) € O(g(n)).
Sif(n) e O(g(n)), alors f(n) + vrai
g(n) € 0(g(m))
La meilleure borne asymptotique de fausse 0(f(n)) + 0(g(n)) =
0(f(n)) + 0(g(n)) est O(f(n) + g(n)) 0(max(f(n), g(n)))
Sig=0(f(n))eth = 0(g(n)) alors i Vrai
= 0(f(n))
5n +8n2 +100n3 # 0(n%) fausse | 5n + 8n? + 100n3 = 0(n%)
100n + logn = O(n + (logn)?) vrai
Vn = 0((logn)?) fausse Vn = Q((logn)?)

Exercice 2 : (12 points) Tri par insertion

Le tri par insertion d’un tableau T[1..n] de n éléments consiste a insérer chaque élément a sa place. Le premier
élément constitue, a lui tout seul, une suite triée de longueur 1. On range ensuite le second élément pour
constituer une suite triée de longueur 2, puis on range le troisieme élément pour avoir une suite triée de
longueur 3 et ainsi de suite...

Le principe du tri par insertion est donc d'insérer a la i-eme itération le i-eme élément a la bonne place. Il faut
pour cela trouver ou I'élément doit étre inseré en le comparant aux autres, puis decaler les éléments afin de
pouvoir effectuer l'insertion.

» &
< P <

Eléments triés [1..i-1] éléments non triés [i..n]

v

1. Ecrire I'algorithme « Tri_insertionl » du tri par insertion tel que décrit précédemment.
Donner sa complexité en nombre de comparaisons.

Réponse :
Procédure tri_insertion1(E/T : tableau[n] d’entiers, entier n)
var i,j, X :entier ;

Début
pouri«— 2 an faire
x «— T[i] ;
je i
tantque (j >0 et T[j - 1] >x) faire T[j] < T[j-1] ;j «—j—1; fait;
T[] < x;
fait;
Fin;
Ou bien

Procedure tri_insertion1(E/T : tableau[n] d’entiers, entier n)
var i,j, X :entier ;

Début
pour i « 2 a n faire
je 1]
tantque (j<i et T[i]>T[j]) faire j«j+1 ; fait;
ke1;
x<TJ[i] ;
tantque (k > j) faire T[k] « T[k-1] ; k«—k-1 ; fait ;
T[] < x;
fait;
Fin;
Complexité de I’ordre de O(n?) car au pire cas pour i de 2 a n on fait i-1 comparaisons ce qui donne

M- =1+42++n-1="C2~0m?)

2. Puisque la suite d’élements, dans laquelle on cherche le rang d’insertion, est triée (T[1..i-1]),
on propose d’utiliser la recherche dichotomique.
a. Donner I’algorithme « Tri_insertion2 ».

Fonction Dichotomie (E/ T :tableau ; i :entier) :entier ;
Var d, f, m :entier ;
début
de—1; f—i-1;
tantque (d<f) faire
m—(d+f)/2 ;
si (T[i]>T[m]) alors d«—m+1
sinon si (T[i]< T[m]) f—m-1
sinon retourner m ;
fsi
fait ;
retourner m ;
fin;
Procedure tri_insertion2(E/T : tableau[n] d’entiers, entier n)
var i,j, X :entier ;
Début
pour i «— 2 a n faire
jeDichotomie(T, i-1) ;
ke
x<T[i] ;
tantque (k >) faire T[k] « T[k-1] ; k«k-1 ; fait ;
T[] < x;
fait;
Fin;

b. Donner sa complexité en nombre de comparaisons.

Réponse : A chaque étape du tri, le nombre de comparaisons est égal a [log, (i — 1)| + 2, soit dans
tous les cas au total Y}/, |log, (i — 1)] + 2n — 2 comparaisons. La complexité est égal a O(nlog, n).
Toutefois, cette méthode perd beaucoup de son intérét puisque I’insertion nécessite toujours un
décalage linéaire. La complexité de ce tri reste donc O(n?).

c. Lacomplexité du tri a-t-elle été améliorée ?

Cette variante est a peine plus efficace que le tri par insertion séquentielle. Donc pas d’amélioration.

3. Soit I’algorithme récursif suivant :
Procedure Tri_insertion3(E/ T : tableau[n] entier ; p : entier)
Var k : entier ;
Début
Si (p>0) alors
Tri_insertion3(T, p-1) ; k<p;
tantque (k>1 et T[k-1]>T[K]) faire permuter(T[k-1], T[K]) ; k<€k-1; fait;
fsi;
Fin;

L appel initial se fait par Tri_insertion3(T, n).
a. Dérouler I’algorithme avec n=8 et T=[6]| 3| 7| 4| 2| 8| 1| 5]

Réponse :

6(3|7/4|2[8|1|5
3|6|714|2[8|1|5
316[7/4(2|8|1|5
316(4(7(2|8|1]|5
314(6|7(2|8|1(5
314|612 |7(8|1|5
314/2|6|7(8|1|5
312|4/6|7[8|1|5
213/4/6|7(8|1|5
213/4/6|7[1|8|5
213|4/6(1|7|8]|5
213|411|/6[(7|8|5
213|1(4(6|7|8]|5
211(3[4(6|7|8]|5
1{2|3[4|6[7|8|5
112(3(4,6|7|5|8
112|3|/4(6|5|7|8
112(3(4|5|/6|718

b. Donner I'équation de récurrence qui décrit le temps d’exécution de l'algorithme.
Résoudre 'équation.

Réponse :
T(0)=0

L’équation de récurrence : { T) =T —1) + (n—1)

Tm)=Tn—-2)+(n—-2)+(n—-1)
TmM)=Tn—-3)+(n-3)+(n—-2)+(n—-1)

Tm)y=Th—-n)+(n—-n)+(n—-—m-1D)+-+n-2)+(n-1)
Tm)=04+1+2+-+Mm—-2)+(n-1)

T(n) = Z k =@~0(n2)
k=0

4. Que constatez-vous (comparer les trois algorithmes) ?

Réponse : Tous les tris ont méme complexité mais on va préférer Tri_insertion2 car le nombre
de comparaison est un peu meilleur que les 2 autres.

