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Le 26/10/2019 
Matière 1 : Algorithmique avancée et complexité,  

 Coefficient 1, durée 1 h 30 
(Spécialités : IA, MFA, SIGL) 

 
Exercice 1 : (8 points) 

a. Donnez les définitions des notations Landau Ω , Θ et O.  
Réponse : 
O(g(n)) = { f :IN →IN |  ∃ c>0 et n0 ≥ 0  tels que   0 ≤ f(n) ≤ c.g(n)    ∀ n ≥ n0  } 
Ω(g(n )) = { f :IN → IN | ∃ c>0 et n0 ≥ 0  tels que  0 ≤ c.g(n) ≤ f(n)     ∀ n ≥ n0   }  
Θ(g(n)) = { f :IN →IN |  ∃ c1>0, c2>0 et n0 ≥0 tels que  0 ≤ c1.g(n) ≤ f(n)  ≤ c2.g(n)   ∀ n≥ n0 } 
 

b. Les affirmations ci-dessous sont-elles vraies ou fausses  ? Si vous pensez qu’une affirmation est 
fausse, indiquez pourquoi et corrigez l’affirmation. (Reproduire, sur la copie, le tableau ci-
dessous et le compléter). 
 

Affirmation 

Vraie 
ou  

Fausse
? 

Affirmation correcte 

Si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔(𝑛𝑛) ∈
O�𝑓𝑓(𝑛𝑛)�. 

fausse 
si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�,   

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔(𝑛𝑛) ∈ Ω�𝑓𝑓(𝑛𝑛)�. 
Soit  𝑆𝑆(𝑛𝑛) ∈ O�𝑓𝑓(𝑛𝑛)�,𝑇𝑇(𝑛𝑛) ∈
O�𝑔𝑔(𝑛𝑛)�  Si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�,
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆(𝑛𝑛) + 𝑇𝑇(𝑛𝑛) ∈ O�𝑓𝑓(𝑛𝑛)�. 

fausse 
Soit  𝑆𝑆(𝑛𝑛) ∈ O�𝑓𝑓(𝑛𝑛)�,𝑇𝑇(𝑛𝑛) ∈
O�𝑔𝑔(𝑛𝑛)�  Si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�,
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆(𝑛𝑛) + 𝑇𝑇(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�. 

Si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑛𝑛) +
𝑔𝑔(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)� 

vrai  

La meilleure borne asymptotique de 
𝑂𝑂(𝑓𝑓(n)) + 𝑂𝑂(𝑔𝑔(n)) est 𝑂𝑂(𝑓𝑓(n) + 𝑔𝑔(n)) fausse 

𝑂𝑂(𝑓𝑓(n)) + 𝑂𝑂(𝑔𝑔(n)) =  
𝑂𝑂(max(𝑓𝑓(n), 𝑔𝑔(n))) 

Si 𝑔𝑔 = 𝑂𝑂(𝑓𝑓(n)) et ℎ = 𝑂𝑂(𝑔𝑔(n)) alors ℎ 
= 𝑂𝑂(𝑓𝑓(n)) Vrai  

5𝑛𝑛 + 8𝑛𝑛2 + 100𝑛𝑛3 ≠ 𝑂𝑂(𝑛𝑛4) fausse 5𝑛𝑛 + 8𝑛𝑛2 + 100𝑛𝑛3 = 𝑂𝑂(𝑛𝑛4) 
100𝑛𝑛 + log 𝑛𝑛 = Θ(𝑛𝑛 + (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2) vrai  

√𝑛𝑛 = 𝑂𝑂((𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2) fausse √𝑛𝑛 = Ω((𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2) 
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Exercice 2 : (12 points) Tri par insertion 
Le tri par insertion d’un tableau T[1..n] de n éléments consiste à insérer chaque élément à sa place. Le premier 
élément constitue, à lui tout seul, une suite triée de longueur 1. On range ensuite le second élément pour 
constituer une suite triée de longueur 2, puis on range le troisième élément pour avoir une suite triée de 
longueur 3 et ainsi de suite...  
Le principe du tri par insertion est donc d'insérer à la i-ème itération le i-ème élément à la bonne place. Il faut 
pour cela trouver où l'élément doit être inséré en le comparant aux autres, puis décaler les éléments afin de 
pouvoir effectuer l'insertion. 

                         j                    i 
T                         

 
          Éléments triés [1..i-1]          éléments non triés [i..n] 
 

1. Ecrire l’algorithme « Tri_insertion1 » du tri par insertion tel que décrit précédemment. 
Donner sa complexité en nombre de comparaisons.  

Réponse : 
Procédure tri_insertion1(E/T : tableau[n] d’entiers, entier n) 
var i,j, x :entier ; 
Début 
      pour i ← 2 à n  faire 
      x ← T[i] ;                       
                     j ← i ;                              
                  tantque (j > 0 et T[j - 1] > x) faire T[j] ← T[j - 1] ; j ← j – 1 ; fait ; 
      T[j] ← x ; 
      fait;             
Fin; 
Ou bien 
Procédure tri_insertion1(E/T : tableau[n] d’entiers, entier n) 
var i,j, x :entier ; 
Début 
        pour i ← 2 à n faire 
                    j←1 ; 
      tantque (j<i et T[i]>T[j]) faire  j←j+1 ; fait ; 
                    k←i ;  
                    x←T[i] ; 
                  tantque (k > j) faire T[k] ← T[k-1] ; k←k-1 ; fait ;  
      T[j] ← x ; 
        fait;             
Fin; 
Complexité de l’ordre de O(n2) car au pire cas pour i de 2 à n on fait i-1 comparaisons ce qui donne 
∑ (𝑖𝑖 − 1) = 1 + 2 + ⋯+ 𝑛𝑛 − 1 = 𝑛𝑛(𝑛𝑛−1)

2
𝑛𝑛
𝑖𝑖=2  ~ 𝑂𝑂(𝑛𝑛2) 

 
2. Puisque la suite d’éléments, dans laquelle on cherche le rang d’insertion, est triée (T[1..i-1]), 

on propose d’utiliser la recherche dichotomique.  
a. Donner l’algorithme « Tri_insertion2 ».  
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Fonction Dichotomie (E/ T :tableau ; i :entier) :entier ; 
Var d, f, m :entier ; 
début 
 d←1 ; f←i-1 ; 
               tantque (d≤f) faire 
                         m←(d+f)/2 ; 
                         si (T[i]>T[m]) alors d←m+1 
                         sinon si (T[i]< T[m]) f←m-1  
                                   sinon retourner m ;  
                         fsi   
               fait ; 
               retourner m ; 
fin ; 
Procédure tri_insertion2(E/T : tableau[n] d’entiers, entier n) 
var i,j, x :entier ; 
Début 
        pour i ← 2 à n faire 
                    j←Dichotomie(T, i-1) ; 
      k←i ;  
                    x←T[i] ; 
                  tantque (k > j) faire T[k] ← T[k-1] ; k←k-1 ; fait ;  
      T[j] ← x ; 
        fait;             
Fin; 
 
 

b. Donner sa complexité en nombre de comparaisons. 
 
Réponse : A chaque étape du tri, le nombre de comparaisons est égal à ⌊log2(𝑖𝑖 − 1)⌋ + 2, soit dans 
tous les cas au total ∑ ⌊log2(𝑖𝑖 − 1)⌋ + 2𝑛𝑛 − 2𝑛𝑛

𝑖𝑖=2  comparaisons. La complexité est égal à O(𝑛𝑛log2 𝑛𝑛). 
Toutefois, cette méthode perd beaucoup de son intérêt puisque l’insertion nécessite toujours un 
décalage linéaire.  La complexité de ce tri reste donc O(n2). 
 

c. La complexité du tri a-t-elle été améliorée ?  
 

Cette variante est à peine plus efficace que le tri par insertion séquentielle. Donc pas d’amélioration. 
 

3. Soit l’algorithme récursif suivant : 
Procédure Tri_insertion3(E/ T : tableau[n] entier ; p : entier) 
Var k : entier ; 
Début 
 Si (p>0) alors   
                  Tri_insertion3(T, p-1) ; kp ; 
  tantque (k>1 et T[k-1]>T[k]) faire permuter(T[k-1], T[k]) ;   kk-1 ;  fait ; 
            fsi ;   
Fin ; 
 
 



4 
 

 
L’appel initial se fait par Tri_insertion3(T, n). 
a. Dérouler l’algorithme avec n=8 et T=[6| 3| 7| 4| 2| 8| 1| 5] 

 
Réponse : 
6 3 7 4 2 8 1 5 
3 6 7 4 2 8 1 5 
3 6 7 4 2 8 1 5 
3 6 4 7 2 8 1 5 
3 4 6 7 2 8 1 5 
3 4 6 2 7 8 1 5 
3 4 2 6 7 8 1 5 
3 2 4 6 7 8 1 5 
2 3 4 6 7 8 1 5 
2 3 4 6 7 1 8 5 
2 3 4 6 1 7 8 5 
2 3 4 1 6 7 8 5 
2 3 1 4 6 7 8 5 
2 1 3 4 6 7 8 5 
1 2 3 4 6 7 8 5 
1 2 3 4 6 7 5 8 
1 2 3 4 6 5 7 8 
1 2 3 4 5 6 7 8 

 
b. Donner l’équation de récurrence qui décrit le temps d’exécution de l’algorithme. 

Résoudre l’équation.  
 

Réponse : 

L’équation de récurrence :   � 𝑇𝑇(0) = 0
    𝑇𝑇(𝑛𝑛) = 𝑇𝑇(𝑛𝑛 − 1) + (𝑛𝑛 − 1) 

 

𝑇𝑇(𝑛𝑛) = 𝑇𝑇(𝑛𝑛 − 2) + (𝑛𝑛 − 2) + (𝑛𝑛 − 1) 
𝑇𝑇(𝑛𝑛) = 𝑇𝑇(𝑛𝑛 − 3) + (𝑛𝑛 − 3) + (𝑛𝑛 − 2) + (𝑛𝑛 − 1) 

… 

𝑇𝑇(𝑛𝑛) = 𝑇𝑇(𝑛𝑛 − 𝑛𝑛) + (𝑛𝑛 − 𝑛𝑛) + (𝑛𝑛 − (𝑛𝑛 − 1)) + ⋯+ (𝑛𝑛 − 2) + (𝑛𝑛 − 1) 
𝑇𝑇(𝑛𝑛) = 0 + 1 + 2 + ⋯+ (𝑛𝑛 − 2) + (𝑛𝑛 − 1) 

𝑇𝑇(𝑛𝑛) = �𝑘𝑘 =
𝑛𝑛−1

𝑘𝑘=0

𝑛𝑛(𝑛𝑛 − 1)
2

~𝑂𝑂(𝑛𝑛2) 

 
4. Que constatez-vous (comparer les trois algorithmes) ? 

 
Réponse : Tous les tris ont même complexité mais on va préférer Tri_insertion2 car le nombre 
de comparaison est un peu meilleur que les 2 autres. 
 

 
 


