
االتكنـولوجيــجـامعة هواري بومـدين للعلـوم و
 Université des Sciences et de la Technologie Houari Boumediene

 Faculté d’Electronique et d’Informatique
 D é p a r t e m e n t d ’I n f o r m a t i q u e

Concours d’accès au Doctorat 3 ième Cycle Informatique 2019– 2020

1

Le 26/10/2019
Matière 1 : Algorithmique avancée et complexité, Systèmes d’exploitation,

 Coefficient 1, durée 1h30
(Spécialité : RSI)

Partie 1 : Algorithmique avancée et complexité

Exercice 1 : (8 points)

a. Donnez les définitions des notations Landau Ω , Θ et O.
Réponse :
O(g(n)) = { f :IN →IN | ∃ c>0 et n0 ≥ 0 tels que 0 ≤ f(n) ≤ c.g(n) ∀ n ≥ n0 }
Ω(g(n)) = { f :IN → IN | ∃ c>0 et n0 ≥ 0 tels que 0 ≤ c.g(n) ≤ f(n) ∀ n ≥ n0 }
Θ(g(n)) = { f :IN →IN | ∃ c1>0, c2>0 et n0 ≥0 tels que 0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n) ∀ n≥ n0 }

b. Les affirmations ci-dessous sont-elles vraies ou fausses ? Si vous pensez qu’une affirmation est

fausse, indiquez pourquoi et corrigez l’affirmation. (Reproduire, sur la copie, le tableau ci-
dessous et le compléter).

Affirmation

Vraie
ou

Fausse
?

Affirmation correcte

Si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔(𝑛𝑛) ∈
O�𝑓𝑓(𝑛𝑛)�.

fausse
si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�,

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔(𝑛𝑛) ∈ Ω�𝑓𝑓(𝑛𝑛)�.
Si 𝑓𝑓(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑛𝑛) +
𝑔𝑔(𝑛𝑛) ∈ O�𝑔𝑔(𝑛𝑛)�

vrai

La meilleure borne asymptotique de
𝑂𝑂(𝑓𝑓(n)) + 𝑂𝑂(𝑔𝑔(n)) est 𝑂𝑂(𝑓𝑓(n) + 𝑔𝑔(n)) fausse

𝑂𝑂(𝑓𝑓(n)) + 𝑂𝑂(𝑔𝑔(n)) =
𝑂𝑂(max(𝑓𝑓(n), 𝑔𝑔(n)))

Si 𝑔𝑔 = 𝑂𝑂(𝑓𝑓(n)) et ℎ = 𝑂𝑂(𝑔𝑔(n)) alors ℎ
= 𝑂𝑂(𝑓𝑓(n)) Vrai

5𝑛𝑛 + 8𝑛𝑛2 + 100𝑛𝑛3 ≠ 𝑂𝑂(𝑛𝑛4) fausse 5𝑛𝑛 + 8𝑛𝑛2 + 100𝑛𝑛3 = 𝑂𝑂(𝑛𝑛4)
100𝑛𝑛 + log 𝑛𝑛 = Θ(𝑛𝑛 + (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2) Vrai

𝑛𝑛2𝑛𝑛 = Θ(3𝑛𝑛) Vrai

2

Exercice 2 : (12 points)
Une attaque par déni de service (DOS) est une attaque visant à saturer une application de sorte qu’elle
ne puisse plus répondre à de nouvelles requêtes. Typiquement, un pirate essaiera de saturer
l’application par une multiplication de requêtes lourdes en temps de calcul. Un exemple classique est
celui de "Apache" qui, en 1997, intégrait la fonction suivante :

Procédure Proc1(E-S/ T : Tableau[n] de caractère ; E/ n : entier) ;
Var x, y : entier ;
Début
 x2 ;
 tant que (x<=n) Faire
 Si (T[x-1] = '/') et (T[x] == '/') Alors
 Pour y x+1 à n Faire T[y-1]  T[y] ; fait;
 nn-1 ;
 Sinon x x+1 ;
 finsi ;
 fait;
Fin;

a. Que fait cette fonction ?
Réponse :
Cette fonction parcourt une chaine de caractères et s'il y a présence de deux slash successifs
alors elle supprime le deuxième slash en l'écrasant avec le reste de la chaine.

b. Quelle est sa complexité dans le pire des cas ?

Réponse :
Soit n la taille de la chaine donnée, au pire des cas, la chaine ne sera constituée que par des slashs.
Soit T(n) la complexité de cette algorithme on vérifie n fois l'expression :
 Si (T[x-1] = ’/’) & (T[x] == ’/’) Alors …
et la boucle « pour » qui suit l'expression ci-dessus, le nombre d’itérations = n-x. La complexité est
donc la suivante :

� � 1
𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛

𝑖𝑖=2

= �(𝑛𝑛 − 𝑖𝑖) = �𝑛𝑛−�𝑖𝑖 = 𝑛𝑛(𝑛𝑛 − 1) −
𝑛𝑛(𝑛𝑛 + 1)

2
− 1~𝑂𝑂(𝑛𝑛2)

𝑛𝑛

𝑖𝑖=2

𝑛𝑛

𝑖𝑖=2

𝑛𝑛

𝑖𝑖=2

c. Comment pouvait-on donc faire pour saturer un serveur web Apache ?

Réponse :
On peut faire saturer un serveur web Apache en lui donnant une très grande chaine de caractères
ne contenant que des slashs.

3

d. Le patch proposé pour corriger cette faille de sécurité implémentait no2slash de la façon ci-

après.

Procédure Proc1(E-S/ T : Tableau[n] de caractère ; n : entier) ;
Var x, y : entier ;
Début

 x 1 ; y 1;
 Tant que (x <=n) Faire
 T[y]T[x] ;

 Si (T[y] = '/') Alors
 Tant que (x<=n) et (T[x]= '/') Faire
 x  x+1;
 Fait ;
 Sinon x x+1 ;

 Finsi ;
 yy+1 ;

 Fait;
 T[y]  '\0' /* caractère de fin de chaine*/

 Fin;

Quelle est la complexité de cette seconde fonction ?

Réponse :
Le pire cas est quand la chaine ne contient que des ‘/’ donc à chaque itération on supprime un ‘/’.
On a une boucle qui va s'exécuter qu’une seule fois donc la complexité sera :

T(n)=∑ 1𝑛𝑛
1 ~𝑂𝑂(𝑛𝑛)

La faille est-elle corrigée ?

Réponse :
Ce deuxième algorithme est linéaire 𝑂𝑂(𝑛𝑛) donc il est meilleur au premier 𝑂𝑂(𝑛𝑛2). La faille est
corrigée pour un n petit, mais le problème reste posé quand n → ∞.

