Leaslgadill ¢ gplell (symagy @ slpa draly

f""* +~— Université des Sciences et de la Technologie Houari Boumediene
gty Faculté d’Electronique et d’Informatique
Département d’Informatique

U s T H B

Concours d’accés au Doctorat LMD Informatique 2019 — 2020

Le 26/10/2019
Matiére 2 : Réseaux + au choix : Systemes distribués/ Sécurité des systemes,
Coefficient 3, Specialité : RSI

Partie : Systemes distribués
Durée : 1h.

Exercice (10 pts=1+ 1+2+6)

On considére un systéme distribué composé de N processus P(i), i = 1, N ou i est I’identité du
processus P(i) connectés selon une topologie physique connexe. Ces processus sont organisés selon
une arborescence logique supposeée optimale et les feuilles sont organisées selon un anneau
unidirectionnel supposé optimal, établies au préalable.

On désire implémenter le modele du client/serveur sur cette structure de telle sorte qu’un processus
feuille de I’arbre nommé S connu de tous est le serveur et les autres sont des clients. Un client qui
désire un service envoie une requéte qui indique le numéro du service dans I’intervalle [0, M-1] qui
suit la structure établie vers le serveur et le message de réponse (qui contient le numéro de service
comme réponse) suit le chemin permis par la structure vers le client.

Donner un exemple typique de schéma qui représente cette structure.
Donner les structures de données de base a utiliser et expliquer leurs roles
Donner les idées de base de votre solution.

- Ecrire une solution distribuée a I’aide du langage algorithmique.

Solution de I’épreuve Systemes distribués
Exercice (10 pts=1+ 1+2+6)

e Un exemple type de la structure

e Structures de base et rbles

Succi= ... ,//il s’ agit du successeur de i dans [’anneau
pere; : entier ; // il s agit du pere de i dans I’arborescence
filsi : ensemble// il s agit de I’ensemble des fils de i dans [’arborescence

Toutes ces variables sont supposées déja initialisées.

Un parameétre important nommé routeur est utilisé dans les messages de requéte et de réponse. Si le
demandeur du service est un nceud non feuille de 1’arborescence, routeur sera alors initialisée a k
lorsque la requéte arrive au premier nceud feuille k. k est donc le neeud par lequel la réponse
remonte dans 1’arborescence vers le destinataire.

e |dées de base

- L’algorithme utilise une structure d’arborescence dont les feuilles sont organisees en un anneau
unidirectionnel, le tout est optimal. Tous les nceuds peuvent formuler une requéte sauf le
serveur.

- Si le demandeur de service est un nceud non feuille de I’arborescence, 1a requéte descend
jusqu’au premier nceud feuille de 1’arborescence, celui-ci met son nom dans une variable
routeur qui est un parameétre du message de requéte. Ce parametre est aussi véhiculé dans le
message de réponse. Il sert a retrouver ce nceud feuille lorsque la réponse circule dans I’anneau,
ce qui permet a ce dernier de remonter la réponse vers la hiérarchie a travers son pere sur le
chemin du destinataire.

- Si la requéte est générée par un nceud feuille de ’arborescence, celle-ci circule dans 1’anneau
jusqu’a l’arrivée au serveur, la réponse continue a circuler sur I’anneau jusqu’au nceud
destinataire.

Une solution distribuée : La solution est symétrique

Contexte local de Pi

S=....;

M=....;

N=.... ; // c’est le nombre de neeuds de I’arborescence ou sinon une grande valeur.
Succi= ... ;/l déja initialisé au niveau des neeuds de I’anneau.

pere; : entier ; // déja initialisé

filsi : ensemble// déja initialisé

nums; : entier ;

Messages

requete (id : entier, nums : entier, routeur : entier) ;
reponse (id : entier, nums : entier, routeur : entier) ;

Lorsqu'un processus i demande un service ;
Début
Si (i<>S) Alors
nums; : rand () Mod M ;
Si (filsi<> ¢) Alors soit k e fils; :envoyer (requete(i, nums;, 0) a k
Sinon envoyer (requete (i, nums;, 0) succ;

Fsi
Fin ;
A la réception d’'un message requete (id, nums, routeur) de |
Début
Si (filsi<> ¢) Alors soit k & fils; :envoyer (requete(id, nums, routeur)) a k
Sinon
Si (i<>S) Alors Si (j=pere;) Alors routeur :=i ; envoyer (requete (id, nums, routeur)) a succ;
I/ La requéte vient d’atteindre la feuille
Sinon envoyer (requete (id, nums, routeur)) a succ;
Fsi
Sinon nums; :=traiter_requete(id, nums) ;
Si (routeur<=>i) Alors envoyer (reponse(id, nums;, routeur)) a succ;
Sinon envoyer (reponse(id, nums;, routeur)) a pere;
Fsi
Fsi
Fin ;
A la réception d’'un message reponse (id, nums, routeur) de j
Début
Si (i=id) Alors memoriser(nums)
Sinon

Si (filsi=¢) Alors
Si (i<>routeur)Alors envoyer (reponse (id, nums, routeur)) a succ;
// La réponse circule sur [’anneau
Sinon envoyer (reponse (id, nums, routeur)) a pere;
// La réponse commence a monter dans l’arborescence
Fsi
Sinon envoyer (reponse(id, nums, routeur) a pere;
// La réponse continue a remonter dans |’arborescence
Fsi
Fin ;

- Une autre solution

Contexte local de Pi

S=....;

M=....;

N=.... ; // c’est le nombre de nceuds de [’arborescence ou sinon une grande valeur.
Succi= ... ;// déja initialisé au niveau des neeuds de I’anneau.

pere; : entier ; // déja initialisé
fils; : ensemble// déja initialisé
Ri : Tableau [1..N] de entier ;// initialisé a faux ;
Il Ri[k] = vrai signifie que le nceud k est un ancétre du neeud feuille i.
nums; : entier

Messages
requete (id : entier, nums : entier) et reponse (id : entier, nums : entier) ;

Lorsqu’un processus i demande un service ;
Début
Si (i<>S) Alors
nums; : rand () Mod M ;
Si (filsi<> ¢) Alors soit k e fils; :envoyer (requete(i, nums;) a k
Sinon envoyer (requete (i, NUMS;) Succ;

Fsi
Fin ;

A la réception d’'un message requete (id, nums) de |
Début
Si (filsi<> ¢) Alors soit k & fils; :envoyer (requete(id, nums)) a k
Sinon
Si (i<>S) Alors Si (j=pere;) Alors R;[id] :=vrai ; envoyer (requete (id, nums)) a succ;
I/ La requéte vient d’atteindre la feuille
Sinon envoyer (requete (id, nums)) a succ;
Fsi
Sinon nums; :=traiter_requete(id, nums) ;
Si (Ri[id]=faux Alors envoyer (reponse(id, nums)) a succ;

Fsi Sinon envoyer (reponse(id, nums)) a pere;
Fsi
Fin ;
A la réception d’'un message reponse (id, nums) de j
Début
Si (i=id) Alors memoriser(nums)
Sinon

Si (filsi=¢) Alors
Si (Ri[id]=faux)Alors envoyer (reponse (id, nums)) a succ;
// La réponse circule sur [’anneau
Sinon envoyer (reponse (id, nums)) a pere;
// La réponse commence a monter dans l’arborescence
Fsi
Sinon envoyer (reponse(id, nums) a pere;
// La réponse continue a remonter dans |’arborescence
Fsi
Fin ;

Leaslgadill ¢ gplell (symagy @ slpa draly

f"”* : r'"* Université des Sciences et de la Technologie Houari Boumediene
e e s Faculté d’Electronique et d’Informatique

——-arz.v-—'-:”'»-ﬂw
USsTHE®B Département d’Informatique

Concours d’acceés au Doctorat 3 ieme Cycle Informatique 2018 — 2019

Le 24/10/2018
Matiere 2 : Réseaux + au choix : Systemes distribués/ Sécurité des systemes,
Coefficient 3, durée 2 Heures.
(Specialité : RSI)
Partie 2 : Systéemes distribués
Exercice 1: 4 pts= (1+0.75+0.75+1.5)

Soit la structure d’événements S= (E, <) définie par le diagramme de temps suivant :

cl c2 c3 c4 c5

1- Dater les événements avec 1’horloge vectorielle de Mattern.

2- En utilisant les horloges, donner la relation d’ordre pour les couples d’éveénements: (a7, b6)
(a4, c2).

3- Dans quels types d’algorithmes répartis a-t-on besoin des coupures? pourquoi est-ce
important d’avoir une coupure consistante dans ce type d’algorithmes ?

4- Donner un exemple de coupure consistante et un exemple de coupure non consistante (il
suffit de préciser le dernier évéenement de la coupure au niveau de chaque processus), avec
justification pour chaque réponse (vous avez le choix pour la méthode).

Exercice2: 6pts= (1.5+1.5+3)

On considére un systeme distribué composé de N processus, P;i i = 1, N; ou i est I’identité du
processus P; connectés selon une topologie physique connexe. On cherche a construire un index
distribué d’un réseau p2p (pair a pair) sur un arbre construit avec 1’algorithme d’exploration en
paralléle (il faudra construire I’arborescence). Initialement, chaque processus P;, posséde une liste
L; de ressources R;j a partager lui-méme. A la fin de 1’algorithme, chaque processus Pi doit avoir
comme résultat un index IndxP; indiquant les ressources détenues par les processus du sous-arbre
dont il est la racine. Tandis que le processus racine possédera un index global.

NB. Exemple d’index : une liste de la forme (Py, Lg), le processus Py, posséde la liste de ressource
L.

Questions :

1-Donner les structures de données et les messages utilisés pour cet algorithme.
2-Donner le principe détaillé de I’algorithme.

3-Ecrire une solution distribuée a ce probleme.

Bon courage.

Solution de I’épreuve Systemes distribués

Exercice 1: 4 pts =(1+0.75+0.75+1.5)

1- Datation des événements avec I’horloge vectorielle de Mattern.
Processus A: a1(1,0,0), a2(2,0,0), a3(3,0,0), a4(4,1,0), a5(5,1,0), a6(6,4,1), a7(7,5,4).
Processus B: b1(0, 1, 0), b2(0,2,1), b3(2,3,1), b4(2,4,1), b5(2,5,1), b6(2,6,3), b7(5,7,3).

Processus C: ¢1(0,0,1), c2(2,5,2), ¢3(2,5,3), c4(2,5,4), ¢5(3,5,5).

2- Relations d’ordre des couples d’événements:
a7(7,5,4) et b6(2,6,3) sont deux évenements indépendants.
a4(4,1,0) et c2(2,5,2) sont deux évenements indépendants.

3- Les coupures sont utilisées dans les algorithmes de calcul d’état global. Une coupure
consistante permet de capturer un état global cohérent, et ce dernier permet de faire un
redémarrage (aprés panne) cohérent et sans perte d’informations.

4- Un exemple de coupure consistante et un exemple de coupure non consistante :

C2
y

a6

A al a2c1/ a3
=0 O D)

c5

Exemple de coupure consistante : C1 (Justification : pour tout évenement e’ de réception de
message inclue dans la coupure, ['évenement e d’envoi du méme message est aussi dans la
coupure)

Exemple de coupure inconsistante : C2 (Justification : [’évenement c2 réception d’'un
message est inclus dans [’état du processus C alors que [’événement b5 d’envoi du méme
message sur le processus B, ne fait pas partie de [’état de ce dernier).

Exercice2: 6pts= (1.5+1.5+3)
1- Les structures de données et les messages
Les structures :
On va définir :
- Une structure struct proRes : <Py, Ly> avec Ly : liste de Ressources Ry, détenues par le
processus Pk.
- Une liste de données IndxPi=Liste d’éléments de type struct proRes(Pk, Lk). Pk est
I’identité d’un processus donné et Ly, une liste de ressources détenues par le processus Pk.

Les messages :
- explore () ;
- reponse (IndxP; : Liste de structure proRes) ;

2- Le principe de I’algorithme

Initialement, chaque processus possede sa propre liste de ressources a partager lui-méme, dans une
structure de type proRes. Tandis que la structure indexP; est initialisée a proRes; et va étre mise a
jour avec la construction de ’arbre. On va utiliser 1’algorithme d’exploration en parallele pour
construire I’arbre et pour remonter les indexes locaux des feuilles vers la racine. Lors de la phase
d’exploration, le processus PO envoie un message explore a tous ses voisins. Tout processus P; qui

recoit le message explore () pour la premiere fois, considére 1’émetteur comme son pere et envoie
lui-méme le méme message a tous ses voisins. Si pas de voisins, le processus P; répond a son pére
en envoyant son propre index indexP; (le message reponse(indexP;)). Pour tout message redondant
explore() recu, le processus P; répond immédiatement a 1’émetteur P; par un message Réponse
(null).

A la réception d’un message reponse (indexP;) sur Pj, si indexP; n’est pas null, I’index local
indexP; est mis a jour (indexP;i=indexP; union indexP;) et le processus P; est ajouté dans une liste
filsi. Sinon le message est simplement ignoré. L’algorithme se termine quand le processus racine de
I’arbre recoit les réponses de tous ses voisins.

3- L’algorithme :

Contexte local du processus Pi :
Les variables
proRes; :<structure déja initialisée par la liste de ressources partagées par P;>.
indexP; : liste de structures de type prosRes.
voisins; : ensemble des identités des processus voisins de P;.
pere; : identité du processus pére de P;.
fils; : ensemble des identités des processus fils de P;.
recu; : booleen.
nbsucc; : entier.
Les messages :

- explore ()

- reponse (index; : liste de structures proRes;)
Initialisation :
Début
recu; :=false ; voisins; :=<les voisins de pi> ; nbsucc; :=|voisins;j; indexP; :=proRes;;
Si (i=0) Alors

recu; :=true ; pere; :=i ;
V k e voisins; : envoyer (explore ()) a Pk

Fsi
Fin ;

A la réception d’un message explore() de P; :
Début
Si (recui=true)
Alors envoyer (reponse(null)) a P;
Sinon

pere; :=j ; recu; :=vrai ;
Si (voisins; <>null) Alors V k € voisins; : envoyer (explore ()) a Pk
Sinon envoyer reponse (indexP;) a Pperei.
Fsi
Fsi
Fin ;

A la réception d’un message reponse (indexP;) de P;
Début
nbsucc; :=nbsucc;-1 ;
Si (index; <>null) Alors
fils; :=fils; +j ;
indexP; := indexP; + indexP;j ;
Fsi ;
Si (nbsucci=0) Alors Si (pere;=i) Alors « fin de I’algorithme »
Sinon envoyer reponse(indexP;) a Pperei ;

Fsi
Fsi
Fin ;

Leaslgadill ¢ gplell (symagy @ slpa draly

f"* r'"* Université des Sciences et de la Technologie Houari Boumediene
:‘;jjf;:: Faculté d’Electronique et d’Informatique
B T Na Département d’Informatique

Concours d’accés au Doctorat 3 ieme Cycle Informatique 2017 — 2018

Le 29/10/2017
Matiere 2 : Réseaux + au choix : Systemes distribués/ Sécurité des systemes,
Coefficient 3, durée 2 Heures.
(Specialité : RSI)

Partie 2 : Systéemes distribués

Exercice 1:

Soit la structure d’événements S= (E, <) définie par le diagramme de temps suivant :

1- Dater les événements de la structure en utilisant les horloges vectorielles de Mattern.

2- Donner la relation entre les couples d’événements suivants en utilisant les horloges vectorielles :
(b3, c4) ; (a1, c3).

3-Vérifier la nature de chacune des coupures C1 et C2 a I’aide du théoréme connu dans ce
contexte.

4-Pour les coupures consistantes, donc 1’état global correspondant est consistant, donner les
messages en transit pour chacune et pour chaque canal (émetteur--récepteur).

Cl c2

. A =
POA

c3 c4\

Exercice 2 :

1. Proposer un principe de construction d’une arborescence couvrante.

2. Adapter le principe précédent pour proposer un algorithme d’élection. Donner le principe et
I’algorithme correspondant a votre proposition.

3. Discuter clairement les avantages et les inconvénients de votre proposition ainsi que sa tolérance
aux défaillances.

Solution de I’épreuve Systemes distribueés
Exercice 1 : 8pts=(2+2+3+1)

1- Datation des événements

al= 1 az2= 2 a3= 3 ad= 4 ab= 5
1 1 1 1 2
0 0 1 1 3
bl= 0 b2= 0 b3= 3
1 2 3
0 0 0
cl= 0 c2= 0 c3= 0 c4= 4
0 2 2 2
1 2 3 4

2-Relation de précédences entre événements en utilisant les horloges vectorielles

3 4

- (b3<cd) car 3 =H(b3) <>H(cd) = 2
0 4

1 0

- (al<c3) car 1=H(al)<>H(c3)=2
0 3

3- Vérification de la nature de chacune des coupures C1 et C2 a I’aide du théoréme.

100 1
o H(Cl)=Max (H(al), H(b2), H(c3))=Max(1 2 2)= 2
003 3
1
Pour que C1 soit cohérente, H(C1) doit étre égale a (H(al[1], b2[2], c3[3])=2
3
Elle est égale > C1 est cohérente.
2 34 4
o H(C2)= Max (H(a2), H(b3), H(c4)) =Max (1 3 2)= 3
004 4
2
Pour que C2 soit cohérente, H(C2) doit étre égale a (H(a2[1], b3[2], c4[3])= 3
4

Ce n’est pas le cas = C2 n’est pas cohérente.

4- Messages en transit

Pour les coupures consistantes, donc 1’état global correspondant est consistant, les messages en
transit pour la coupure C1 et pour chaque canal sont :

La topologie est compléte, étant donné que les messages s’échangent entre tous les processus.
Au niveau de | :

Etat du canal qui le relie avec Jest : ¢

Etat du canal qui le relie avec K est : {(c1, a3) ; (c3,a5)}

Au niveau de J :

Etat du canal qui le relie avec | est : ¢

Etat du canal qui le relie avec K est : ¢

Au niveau de K :

Etat du canal qui le relie avec | est : ¢

Etat du canal qui le relie avec J est : ¢

Exercice 2 : Correction non disponible pour le moment.

Leaslgadill ¢ gplell (symagy @ slpa draly

~ r'"* Université des Sciences et de la Technologie Houari Boumediene
gl Faculté d’Electronique et d’Informatique
Département d’Informatique

U 8§ T H B

Concours d’acceés au Doctorat 3 ieme Cycle Informatique 2016 — 2017

Le 26/10/2016
Matiere 2 : Réseaux + au choix : Systemes distribués/ Sécurité des systemes,
Coefficient 1, durée 2 Heures.
(Specialité : RSI)

Partie 2 : Systéemes distribués

Exercice 1 : (B pts=1,56 + 1+ 1,5 + 1)

Soit la structure d’événements S= (E, <) définie par le diagramme de temps suivant :

1- Dater les événements de la structure en utilisant les horloges vectorielles de Mattern.

2- Donner la relation entre les couples d’événements suivants en utilisant les horloges vectorielles :

(€13, e32) ; (ell, e35).

3- Vérifier la nature de chacune des coupures C1 et C2.

4- Pour les coupures consistantes, donc 1’état global correspondant est consistant, donner les
messages en transit pour chacune et pour chaque canal.

| ! e12 \{3
J M\&k‘ez

K e3l e32 ep3 e34 e35
N

el4d

4

C1 C2

Exercice 2 : (5 pts= 2 + 1+ 2)

On suppose un ensemble de processus liés par une structure connexe définie par le réseau physique de la
figure ci-dessous. Pour cela, chaque processus posséde trois variables : succ;, pere; et fils;. Si succ;= -1, cela
veut dire que le processus est un nceud feuille de I’arbre. Si pere;=i, cela veut dire que le processus fait partie
de I’anneau. Chaque arbre contient seulement un neeud racine et un neeud feuille.

On désire réaliser le modele client/serveur de telle sorte qu’un seul processus S (connu de tous) de 1’anneau
est serveur et que seulement les nceuds feuilles des différents arbres sont des clients. Donc, les autres nceuds
de I’anneau servent d’intermédiaires pour les requétes et les réponses. Les services demandés/fournis sont
numérotés de 1 & M et le serveur retourne le numéro de service demandé comme réponse a ce service. Les
différents messages empruntent les voies de la structure physique définie pour arriver & destination.

A- Donner le principe de cet algorithme.

B- Lister les différentes primitives de traitement
des messages et expliquer leurs parametres.

C- Ecrire cet alaorithme.

Correction

Exercice 1 : (B pts=1,6 + 1+ 1,5 + 1)
1- Datation des événements suivants en utilisant les horloges de Mattern.

2| 3
é 0
0 0
0 0 4

el4
I 4
3
) 2
K €31 / \X €35
I 2
1 2 3 4 g
c1 Cc2

2- Relation entre les couples d’événements suivants en utilisant les horloges de Mattern :
- (e13//e32) car (300) =H(es) // H(ezx) = (202)
- (ell<e35)car (100) =H(er) <H(ess)= (245)

3- Nature de chacune des coupures C1 et C2 en utilisant les horloges de Mattern.
Nature de la coupure C1:
H(C1)= Max (H(eo1), H(ez2), H(e33))
=Max((000),(121),(203))=(123)
X= (H(eou[1], H(e22[2]), H(es[3]))= (0 2 3)
C1 n’est pas consistante car H(C1) <> X.
Nature de la coupure C2:
H(CZ): Max (H(e13), H(e24), H(934))
=Max((300),(243),(204))=(344)
X= (H(e1s[1], H(e24[2]), H(ea[3]))= (3 4 4)
C2 est consistante car H(C2) = X.

Ou bien

Cl n’est pas consistante car 1’événement de réception e2l appartient a la coupure C1 et son
événement d’émission el1 n’y appartient pas. De méme, respectivement, que e32 avec e12.

C2 est constante car chaque événement appartenant a la coupure C2, tous les événements qui le
précédent causalement appartiennent aussi a C2.

4- Les messages en transit de la coupure C2 (seule coupure consistante):

au niveau du processus | : J->1:9); (K->1: (&34, €14)).
au niveau du processus J : (1->J : (€13, €25)) ; (K->J: ¢).
au niveau du processus K : (I->K: 9); (J->K : (24, €35)).

Exercice 2 : (b pts= 2 + 1+ 2)

1- Le principe de fonctionnement de [’algorithme -

Un processus client désirant un service, le choisie dans I’intervalle [0..M-1] et véhicule une requéte,
contenant entre autres le numéro du service et I’identit¢ du pére de ce nceud, a son peére. Cette requéte suit la
structure de I’anneau jusqu’a I’arrivée au serveur s. Donc, chaque nceud la recevant la transmis a son
successeur s’il n’est pas lui-méme le serveur. Le serveur, quand il regoit cette requéte, la sert et renvoie un
message de réponse a son fils si celui-ci est destinataire final sinon & son successeur avec comme destinataire
le pére du demandeur. La réponse suit la structure jusqu’au pére du nceud demandeur. Celui-ci la transmit a
son fils, qui a tour mémorise la réponse localement.

2- Les différentes primitives et leurs parametres.
Le texte de 1’algorithme est symétrique car tous les processus utilisent les mémes messages et leurs
comportements différent selon leurs identités et les événements qui se produisent localement.
Trois primitives sont utilisées :
- Alademande de service ;
- Ala réception de requéte (orig, s) de Pj ; //orig représentent le pére du nceud feuille demandeur de
service de numero s.
- Alaréception de reponse (dest, s), // orig représentent le pére du nceud feuille demandeur de
service de numéro s.

3- Une solution distribuée a ce probléeme :
Contexte de Pi
Const Serveur=... ;// c’est le nom du serveur.
M=...,
Var pere; > entier ; // déja initialisé a pére de i s’il existe, sinon 4 i
fils; : ensemble : /* déja initialisé a fils de i s’il y a lieu sinon a vide.
SUCC; : entier ; // déja initialisé
S : entier ;
Messages

- requéte (orig,)
- reponse (dest, s)

A la demande d’un service
entier s;;
Début
Si (succi=-1) // le nceud feuille de [’arbre.
Alors s;:= choisir_service (M) ; envoyer (requéte (pere;, S;) a pere;
Fsi
Fin ;
A la réception d 'un message requéte (orig, s) de j
Début
Si (i<>serveur)
Alors envoyer (requéte (orig, S) a succ;
Sinon s; ;= servir_requete(orig, s) ; Si (orig = i) Alors envoyer (reponse (orig, s;) a fils;
Sinon envoyer (reponse (orig, S;) & SUcc;

Fsi
Fsi
Fin ;

A la réception d’un message reponse (dest, s) de |
Début
Si (dest =i) Alors envoyer (reponse (dest, s) a fils;
Sinon Si dest=pere; Alors memoriser(s)
Sinon envoyer (reponse (orig, s;) a succ;

Fsi
Fsi
Fin:

Leaglgadill ¢ gplell (symagy @ sloa draly
2

: Université des Sciences et de la Technologie Houari Boumediene

(T I . 4 .) .
e /e ety Faculté d’Electronique et d’Informatique

betrp Sl pla
B T Na Département d’Informatique
Concours d’acceés au Doctorat LMD Informatique, 2014/2015

Epreuve de Systemes et Réseaux
(Option : Systemes Informatiques) USTHB le 15/10/2014

Partie : Systémes répartis

On désire gérer deux types différents de ressources réutilisables R1 et R2 avec respectivement nl et n2 instances.
Chaque processus ne peut demander et acquérir qu’un type de ressource a la fois et au nombre désiré mais ne
peut exprimer de nouvelle demande que s’il n’a pas de ressources acquises.

Pour cela, on utilise un serveur central centr dont les rdles sont de recevoir les requétes et les libérations des
clients et de les orienter vers le serveur secondaire approprié. 1l permet aussi le contréle des requétes des clients.
On utilise alors deux serveurs secondaires : Servl gere la ressource R1 et Serv2 gére la ressource R2. On
suppose que les clients ont des liens physiques directs avec centr et avec les deux autres serveurs et que centr a
des liens physiques directs avec les deux serveurs.

1- Lister les différents messages au niveau de chaque type de processus et expliquer leurs parametres.
2- Donner le principe de cet algorithme.
3- Ecrire I’algorithme

Correction de I'Epreuve de Systémes Distribués
du Concours d'accés au Doctorat LMD Informatique, 2014/2015

Correction : (10 pts= 2+ 3+5)
1- Liste de messages :

Au niveau du client i :

demande (k, nb, source), ou k est le numéro de la ressource demandée, nb le nombre d’instances
demandées et source I’identité du processus demandeur.

autoris(k, ok), ou k est le numéro de la ressource concernée par 1’autorisation et ok est un
booléen, sa valeur vrai indique 1’autorisation d’accés aux ressources et sa valeur faux indique
une interdiction faute d’une demande ou une acquisition en cours.

liberer (k, nb, source), ou k est le numéro de la ressource concernée par la libération, nb le
nombre d’instances libérées de la ressource et source 1’identité du processus qui libére ces
instances.

Au niveau de Serv[k]
demande (k, nb, source)
autoris(k, ok), la valeur de ok est toujours vrai
liberer (k, nb, source)
Au niveau de centr
demande (k, nb, source)
liberer (k, nb, source)

autoris(k, ok), la valeur de ok est toujours faux si ce message est envoyeé.

2- Principe de 1’algorithme

L’algorithme est composé de trois types de processus : les clients qui demandent 1’une des deux ressources, le
processus centr qui recoit les requétes des clients et les deux serveurs qui servent les clients.

Un client qui désire nb instances d’une ressource R[K], envoie sa demande contenant 1’identité et le
nombre d’instances de la ressource et sa propre identité¢ au processus centr et attend la réception d’une
autorisation d’acceés a cette ressource. Une fois regue cette autorisation, il accéde a cette ressource et a la
fin de son utilisation, il envoie un message de libération vers le serveur concerné.

Le processus centr, en recevant une requéte d’un client donné, il vérifie si se processus n’a pas de
demande en instance, auquel cas il ne lui répond pas (ou il lui répond négativement, c’est une autre
option) ; dans le cas contraire, il enregistre sa requéte localement et 1’aiguille vers le serveur approprié.
Quand ce serveur recoit une libération d’un client il note localement cette libération et 1’aiguille vers le
serveur concerne.

Chague serveur k entretient une variable qui indique a tout moment le nombre d’acces disponibles pour
la ressource k (initialement n1 pour R[1] et n2 pour R[2]) et une file d’attente pour la ressource gérée.
Quand le serveur k recoit une requéte sur la ressource qu’il gére, il retourne immédiatement une
autorisation au client concerné si le nombre d’accés disponibles pour la ressource n’est pas suffisant
auquel cas il débite le nombre a allouer du nombre d’instances libres. Sinon, il insére cette requéte dans
la file d’attente associée a R[k] de maniére fifo. A la réception d’un message de libération de la
ressource R[K], le serveur k récupére le nombre d’instances libérés et examine s’il peut satisfaire des
processus selon 1’ordre fifo pour leurs envoyer des messages d’autorisations.

3- Texte de I’algorithme

Un processus peut ne pas libérer a la fois toutes les instances déja acquises.

Au niveau d’un client |

Contexte du client i

Const Serv[l]=... ;Serv[2]=.... ;Centr=... ;

A la demande de nb instances de la ressource R[K] ;
Début

envoyer (demande (k, nb i) a centr ;

Fin ;

A la réception de autoris(k, ok) de Pj ;

Début

Si ok Alors

< Accéder aux instances de la ressource (k)>

Sinon < retarder demande a la libration de toutes les
instances acquises>

Fsi

Fin ;

A la fin d utilisation de nb instances de la ressource(k) ;
Début

envoyer (libérer (k, nb, i)) a Centr

Fin ;

Au niveau du centr
Contexte de centr

Const Serv[l]=... ;Serv[2]=.... ;
Var f_acquis :file de format (id, nb) + ses procedures ;
[* file de processus utilisant des ressources */

f wait : file de format (id, nb)+ses procédures ;/*
file d ‘attente de ressources */
A la réception de demande (k, nb, source) de Pj;
Début
Si non exite(f-acquis, source) alors inserer (f-acquis,
nb, source) ; envoyer (demande (k, nb, source) a
Serv[k] ; Sinon envoyer (autoris(k, faux)
Fin ;
A la réception de libérer (k, nb, source) de Pj;
Début
supprimer (f-acquis, nb, source) ; envoyer (libérer (k,
nb, source) a Serv[k] ;
Fin ;

Au niveau de Serv[K]
Contexte de Serv[k]
NbAccesDispo; : entier ;nbl=...nb2=.... ;
fIK] - file d’attente de format (id, nb) + ses
procédures d’acces;
Initialisation
Début
Si (k=1) Alors NbAccesDispo; :=nb1 fsi;
Si (k=2) Alors NbAccesDispo; :=nb2 fsi ;
Fin ;
A la réception de demande (k, nb, source) de Pj;
Début
Si non vide (f[k])et (NbAccesDispo; >=nb) Alors
envoyer (autoris(k, vrai)) a source
NbAccesDispo; :=NbAccesDispo; —nb ;
Sinon inserer(f[K],nb, source) // Ordre fifo
Fsi
Fin ;
A la réception de liberer (k, nb, source) de Pj;
Var m : entier ;
Début
NbAccesDispo; :=NbAccesDispo; +nb ;
tantque (f[kK]<>¢) et(premier (f[k]).nb<=
NbAccesDispo;)Alors
NbAccesDispo; :=NbAccesDispo; — premier
(f[KD.nb ; supprimer(premier(f[k]);
envoyer ((autoris(k, vrai)) a premier (f[k]).id
Fait
Fin ;

Leaglgadill ¢ gplell (symagy @ sloa draly

f"* ~r*~ Université des Sciences et de la Technologie Houari Boumediene

::;_i;::: Faculté d’Electronique et d’Informatique
N Département d’Informatique

Concours d’acceés au Doctorat LMD Informatique, 2013/2014

Epreuve de Systemes distribués
(Option : Systemes Informatiques) USTHB le 20/10/2013

Exercice 1 : (9 pts=1+1+2+1+1.5+1.5+1)

A/ Répondre aux questions suivantes :

al- Quelle est I’utilité de ’approche micro - hoyau dans la structuration des systemes distribués ?

a2- Décrire comment utiliser le mécanisme d’appel de procédure a distance pour I’implémentation du modéle
client/serveur.

B/ On consideére la trace d’exécution donnée par la structure d’événements de la Figure suivante. Il s’agit du
résultat d’une exploration en parallele des processus P1, P2,...P5 (reliés par une topologie de communication
connexe donnée) sans transport d’information de controle.

b1- Déduire la topologie qui relie ces processus.

€11 €12 €13 e14
P1

e \% / /

€31 €32

A s\ek X\

P5

P3

P6

€61 €62 €63 €64] €65

b2- Déduire le nombre de messages redondants et I’arborescence construite.

b3- Si on considére le transport d’informations de contrdle, donner les messages redondants qui seront
éliminés ?

b4- Dater uniguement les événements du passe de la coupure a 1’aide des horloges de Mattern.

b5- Donner la nature de la coupure C en se basant sur les horloges de Mattern.

Exercice 2 : (11 pts=2.5+1 +45 +1 +2)
On considere un systeme distribué composé de N processus P(i), i = 1, N ou i est I’identité du processus P(i)
connectés selon une topologie physique connexe. Ces processus sont organisés selon un anneau logique
bidirectionnel (i.e. chaque nceud ne peut communiquer qu’avec son prédécesseur et son successeur dans
I’anneau) supposee optimale (i.e. chaque voisin dans 1’anneau est aussi un voisin dans le réseau).
On désire implémenter un service d’exclusion mutuelle pour trois ressources différentes sur cette structure en
supposant qu’un processus dans I’anneau est le serveur de tous les autres processus. Chaque processus désirant
utiliser une ressource donnée, la demande au serveur en envoyant sa requéte, qui contient le numéro de la
ressource et une estampille locale (selon les horloges de Lamport), a travers la structure selon un sens choisi de
maniére aléatoire. Le serveur répond dans le sens inverse du sens d’arrivée de la demande. Tous les autres
messages liés au service d’exclusion mutuelle doivent circuler a travers la structure logique établie.

a- Donner le principe de fonctionnement de 1’algorithme

b- Lister les différents messages a utiliser.

c- Ecrire I’algorithme.

d- Donner la complexité moyenne en nombre de messages pour réaliser une section critique.

e- Donner les modifications nécessaires pour inclure le serveur comme client ?

Bon courage

Correction de I'Epreuve de Systémes Distribués
du Concours d'accés au Doctorat LMD Informatique, 2013/2014

Exercice 1 : (9 pts=1+1+2+1+1.5+1.5+1)
A/
al-

- Simplification dans la conception et extension des systemes distribués (SDs)

- Séparation entre les services de bases communs des SDs et des services implémentés par des

serveurs spécifiques au besoin

a2- Dans le modéle client/serveur, le serveur implémente un certain nombre de services qu’il fournit
aux clients. On peut imaginer I’implémentation de chaque service par une procédure que le serveur
invoque quand il regoit la requéte du client. Ce qui veut dire que le serveur dispose d’une table de
correspondance entre le nom du service demandeé par le client et le nom de la procédure qui le réalise.
Le résultat du service est retourné par la procedure au serveur, ce dernier le fait passer au client.
On peut utiliser le mécanisme d’appel de procédure a distance pour I’'implémentation du mod¢le
client/serveur comme suit : Le client fait appel directement a la procédure qui réalise le service par son
nom en lui fournissant les paramétres nécessaires. La procédure lui retourne directement le résultat.

B/

b1- La topologie b2- Nombres messages redondants : 8.
-L’arborescence

b3- Nombre messages redondants éliminés :
(14);(21);
Si 6 recoit en premier de 1 Alors
(6,5) ; (6,2) ; Si 5 recoit en premier de 1 Alors (5, 6) ; (5,3) Sinon /* recoit de 3 */(1,5) Fsi
Sinon
Si 6 recoit en premier de 2 Alors
(5,6) ; (6,1) ; (6,5) ; Si 5 recoit en premier de 1 Alors (5, 6); (5,3) Sinon /* recoit de 3*/(1,5) Fsi
Sinon
Si 5 regoit en premier de 3 Alors (5, 1) ; (6,5) ; (6,1) ; (6,2)
Sinon
Si 5 regoit en premier de 1 Alors (5, 1) ; (6,5) ; (6,1) ; (6,2) ; (5,3) Fsi
Fsi
Fsi
Fsi;

(6, 5) si le nceud 6 regoit le message d’exploration en premier de 5 ou de 1 au lieu de 2.

b4- Datation des événements a 1’aide des horloges de Mattern:

H(e11)=(120100) ;H(e12)=(220100) ; H(€13)=(320100) ;H(el4)=(420100) ;H(e15)=(520300);
H(e16)=(622320) ; H(el7)=(723322);

H(e21)=(01 01 00) ;H(e22)=(020100) ; H(e23)=(030100) ;

H(e31)=(001200) ;H(e32)=(002200);

H(e41)=(000100) ;H(e42)=(000200); H(e43)=(000300); H(e44)=(2204 10) ;

H(e51)=(002210) ;H(e52)=(0 0222 0) ; H(e53)=(002230) ; H(e54)=(322240) ; H(e55)=(332253) ;
H(e61)=(030101);H(e62)=(030102); H(e63)=(030103);H(e64)=(032234);H(e65)=(432235);

b5- Vérification de la nature de C a I’aide des horloges de Mattern :

H(C)= Max (H(e13), H(e23), H(e32), H(e43), H(e(54), H(e(65))
=Max ((320100),(030100),(002200),(000300),(322240),(432235))
=(432345)

Pour que C soit cohérente, H(C) doit étre égale a :

(H(e13)[1], H(e23[2]), H(e32)[3], H(e43)[4], H(e(54)[5], H(e(65)[6])=(332345);

Elle est différente > C n’est pas cohérente.

Exercice 2 : (11 pts= 25+ 1 + 45 + 1 + 2)

a- Le principe de fonctionnement de [’algorithme
Le serveur entretient trois files d’attente fifos, une par ressource une entrée par ressource qui indique si
celle-ci est libre ou occupée.

Etant donné que le processus serveur est situé sur 1’anneau, 1a requéte portant sur la ressource critique
désirée (soit r) estampillée a I’aide des horloges de Lamport (H(r)) et accompagnée de I’identité du
nceud demandeur (Soit K) est envoyée le long de 1’anneau dans un sens choisi aléatoirement. Cette
requéte est transmise de proche en proche jusqu’a I’arrivée au serveur. Celui-ci retourne
immédiatement une autorisation a travers le nceud qui lui a transmis cette requéte (soit j) si la file f(r)
est vide (i.e. la ressource est libre). Puis enfile la requéte avec les informations (k, r, j, H(r)) dans la file
f(r). Le processus destinataire d’une autorisation, quand il la recoit, accede a sa SC.

Un processus k qui sort de sa section critique pour une ressource r, véhicule un message de libération
accompagné de (jk r) dans un sens choisi aléatoirement. Quand le serveur recoit ce message, il purge
le premier élément de la file f(r) et si la file n’est toujours pas vide, il véhicule un message
d’autorisation sur le chemin indiqué par la requéte.

a- Les différents messages a utiliser.

Trois messages sont utilisés :

Requéte (k, r, NS) et Autorisation (k, r), Liberation (r) ou k est I’identité du processus demandeur, r est
le numéro du service et NS est ’estampille de la requéte.

b- Une solution distribuée a ce probleme :
On suppose que le coordinateur est nommé serveur.

Contexte de Pi

Const serveur;= ; N=... ;// N : Nombre de processus du réseau

succ; : entier ; /* déja initialisé a successeur de i dans [’anneau

pred; : entier : /* déja initialisé a prédécesseur de i dans I’anneau

NS;: entier :=0 ;

Messages

Requéte (k, r, NS) et Autorisation(k, r, NS), Liberation (r) ou k est I’identité du processus demandeur, r
est le numéro du service et NS est I’estampille de la requéte.

A la demande de la ressource ® :

Début

Si (i<>serveur;) Alors NS;++ ; | :=choisir (succ;, pred;) ; envoyer (requéte (i, r, NS;) a |

Fsi

Fin :

A la réception d’un message requéte (k, r, NS) de j

Var | : entier ;

Début

NS; :=Max (NS;, NS) ;

Si (i<>serveur;) Alors si j= pred; alors | := succ; sinon | := pred; Fsi ; envoyer (requéte (k, r, NS) a |
Sinon Si (f(r)=®) Alors inserer (k, r, j, NS); envoyer(autorisation (k, r, NS;) &

Sinon inserer (k, r, j, NS)
I insére le triplet (k, j, NS) dans f(r) en respectant l’ordre fifo

selon NS
Fsi
Fsi
Fin :
A la réception d’'un message autorisation (K, r, NS) de j
Var | : entier ;
Début

Si (i<>K) Alors si(j= pred;) alors | := succ; sinon | := pred; Fsi ; envoyer(autorisation (k, r) a |
Sinon NS; :=Max (NS;, NS) ;<entrer en SC pour r>

Fsi

Fin :

A la sortie de la section critique de r
Var | : entier ;

Début | :=choisir (succ;, pred;) ; envoyer (liberation (r))alFin:
A la réception de liberation (r) de j
Var | : entier ;
Début
Si (i<>serveur;) Alors si(j= pred;) alors | := succ; sinon | := pred; Fsi ; envoyer (liberation (r)) al
Sinon supprimer (f(r)) ;// Supprime [’élément en téte de f(r)
Si(f(r)<>¢) Alors envoyer (autorisation (premier (f(r)).k, r, NS;)
a premier (f(r).j)
Fin ;// la file f(r) est de format (k, j, NS) ou k est le nom du demandeur de r, j est le noeud qui a
transmis la requéte au serveur et NS est [‘estampille.

c- La complexité moyenne par requéte :
3*N/2 messages en supposant que chaque message (demande, autorisation et libération) parcoure la
moitié de I’anneau.

Pour inclure le serveur comme client
La primitive de demande devient :

A la demande de la ressource (r) :

Début
Si (i<>serveur;) Alors NS;++ ; | :=choisir (succ;, pred;) ; envoyer (requéte (i, r, NS;) a
Sinon Si (f(r)<>¢) Alors inserer (k, r, j, NS); <Entrer en SC pour r>
Sinon inserer (k, r, j, NS)
Fsi
Fsi
Fin ;

A la sortie de la section critique de r

Var | : entier ;
Début Si (i<>serveur;) Alors | :=choisir (succ;, pred;) ; envoyer (liberation (r)) al
Sinon
supprimer (f(r)) ;// Supprime [’élément en téte de f(r)
Si(f(r)<>¢) Alors envoyer (autorisation (premier (f(r)).k, r, NS;)
a premier (f(r).j)
Fsi
Fsi

Fin ;

Leaslgadill ¢ gplell (symagy @ slpa draly

el r'"* Université des Sciences et de la Technologie Houari Boumediene
::j_gf:: Faculté d’Electronique et d’Informatique
USsTHE®B Département d’Informatique

Concours d’accés au Doctorat LMD Informatique, 2012/2013

Epreuve de Systemes distribués

(Option : Systémes Informatiques)
USTHB le 26/11/2012

Exercice 1 : (9 pts=1+1.5+2+1+1.5+2)
A/ Répondre aux questions suivantes :
- Pourquoi sont structurés les algorithmes distribués de maniére non déterministe ?

- Quel est I’handicap des horloges logiques de Lamport? Qu’apportent de nouveau les horloges vectorielles
de Mattern?

B/ Soit la structure d’événements S= (E, <) définie par le diagramme de temps suivant :

1- Dater les événements de la structure en utilisant les horloges vectorielles de Mattern.

2- Donner la relation entre les couples d’événements suivants en utilisant les horloges vectorielles :

(c3, b4) ; (a1, c3).

3- Veérifier la nature de chacune des coupures C1 et C2 a I’aide du théoréme connu dans ce
contexte.

4- Pour les coupures consistantes, donc 1’état global correspondant est consistant, donner les
messages en transit pour chacune et pour chaque canal.

al \ a2 a3 a4 a5
I - -
J b b b4
K \/
c1 ‘c2
Exercice 2 : (11 pts=2.5+1 +45 + 1 + 2)
On considére un systéeme distribué composé de N processus P(i), i = 1, N ou i est I’identité du

processus P(i) connectés selon une topologie physique connexe. Ces processus sont organisés selon
une arborescence logique (i.e. chaque nceud ne peut communiquer dans les deux Sens qu’avec son
pere et ses fils, s’il y a lieu, dans I’arborescence) supposee optimale (i.e. chaque voisin dans
I’arborescence est aussi un voisin dans le réseau).

On désire implémenter un service d’exclusion mutuelle pour deux ressources différentes sur cette
structure en supposant que le processus racine de I’arborescence est le serveur de tous les autres
processus. Chaque processus désirant utiliser une ressource donnée, la demande au serveur en
envoyant sa requéte, qui contient le numéro de la ressource et une estampille locale (selon les
horloges de Lamport), a travers la structure. Tous les autres messages liés au service d’exclusion
mutuelle doivent circuler a travers la structure logique établie.

a- Donner le principe de fonctionnement de 1’algorithme

b- Lister les différents messages a utiliser.

c- Ecrire I’algorithme.

d- Donner la complexité moyenne en nombre de messages pour réaliser une section critique.
e- Que faut-il modifier pour inclure le serveur comme client ?

Bon courage

Correction de I'Epreuve de Systémes Distribués
du Concours d'acces au Doctorat LMD Informatique, 2012/2013

Exercice 1 : (9 pts=1+1.5+2+1+1.5+2)

A/ - Les algorithmes distribués sont structurés de maniére non déterministe pour attendre et
répondre aux événements qui peuvent se produire de maniére asynchrone.

- lls ne peuvent pas déduire la précédence entre les événements par simple comparaison de
leurs estampilles. Les horloges de Matern remédient & ce probléme, ils permettent de
déduire si les événements sont concurrents ou séquentiels par simple comparaison des
estampilles.

B/ Soit la structure d’événements S= (E, <) définie par le diagramme de temps suivant :

1- Datation des événements a I’aide des horloges de Mattern:

\

}Ng
QD

oor\)oow
QD

N

ww oo
ol

b3 b4
1 4
3 4
0 3
c2 c3
0 1 1
0 2 2
1 2 3
2- Relation de précédences entre événements en utilisant les horloges vectorielles :
1 4
- (c3<bd)car 2 =H(c3)<=H(b4)= 4
3 3
1 1
- (al<c3) car 0=H(al)<=H(3)=2
0 3

4- Vérification de la nature de chacune des coupures C1 et C2 aI’aide du théoréme.

011 1
o H(C1)= Max (H(a0), H(b2), H(c3))=Max(0 2 2)= 2
003 3
0
Pour que C1 soit cohérente, H(C1) doit étre egale a (H(a0O[1], b2[2], c3[3])= 2
3
Ce n’est le cas > C1 n’est pas cohérente.
111 1
o H(C2)= Max (H(al), H(b3), H(c3)) =Max (0 3 2)= 3
003 3
1
Pour que C2 soit cohérente, H(C2) doit étre égale a (H(al[1], b3[2], c3[3])= 3
3

Elle est égale > C2 est cohérente.

5- Pour les coupures consistantes, donc 1’état global correspondant est consistant, les messages en
transit pour la coupure C2 et pour chaque canal sont :

La topologie est compléte, étant donné que les messages s’échangent entre tous les processus.
Au niveau de | :

Etat du canal qui le relie avec J est : {(b3, a5)}

Etat du canal qui le relie avec K est : {(c1, a2) ; (c3,a3)}

Au niveau de J :

Etat du canal qui le relie avec | est : ¢

Etat du canal qui le relie avec K est: ¢

Au niveau de K :

Etat du canal qui le relie avec l est : ¢

Etat du canal qui le relie avec Jest: ¢

Exercice 2 : (11 pts= 2.5+ 1 +45 + 1 +2)

a- Le principe de fonctionnement de [’algorithme

Etant donné que la racine de I’arborescence est le processus serveur, un processus client est alors un
nceud qui posseéde un pére sur la structure. La requéte, qui porte sur un numéro de la ressource
critique désirée, est envoyée le long de la branche qui mene vers la racine. Pour cela, le processus
demandeur envoie cette requéte a son pere, celui-ci la transmis a son tour a son pére et ainsi de suite
jusqu’a ce qu’elle arrive a la racine. Pour tracer le chemin de retour d’une requéte, chaque processus
I (y compris le serveur) qui regoit une requéte d’un client k de 1’un de ses fils j, met T[k, r]=j,ou T
est un tableau local de taille N. Ceci veut dire : ‘’quand je regois [’autorisation sur la requéte du
client k de mon pere pour la ressource r, je la lui envoie a travers j’. En retour, 1’autorisation
commence le parcours a partir de la racine. En général, quand un processus recoit une autorisation
de son pére pour une destination X, s’il est le destinataire il rentre en section critique pour la
ressource demandée, sinon il la transmit a son fils T[, r].

Remarque : On peut transporter dans la requéte 1’ensemble Z des nceuds traversés par la requéte. Au
retour, pour envoyer la réponse sur le chemin du destinataire, celle-ci est envoyée a chaque fois au
nceud fils qui appartient a Z.

Quand le serveur regoit une requéte d’un neeud fils k sur une ressource r, si la file locale est vide (i.e.
la ressource est libre), il enfile la requéte avec son estampille sur la file f(r) et envoie une
autorisation accompagnée de I’identité du noeud originaire de la requéte et r au fils T[k, r], sinon il
se contente d’enfiler la requéte en respectant 1’ordre de Lamport.

Un processus qui sort de sa section critique pour une ressource r, véhicule un message de libération
accompagné du numeéro r sur la branche qui le lie a la racine. Quand le serveur regoit ce message, il
purge le premier élément de la file f(r) et si la file n’est toujours pas vide, il véhicule un message
d’autorisation sur la branche qui le lie au processus en téte de file.

b- Les différents messages a utiliser.

Trois messages sont utilisés :

Requéte (k, r, NS) et Autorisation(k, r), Liberation (r) ou k est I’identité du processus demandeur, r
est le numéro du service et NS est ’estampille de la requéte.

c- Une solution distribuée a ce probleme :
On suppose que la racine est de numéro racine.

Contexte de Pi

Const racine;= ; N=... ;// N : Nombre de processus du réseau

pere; : entier ; /* déja initialisé a péere de i s'il existe, sinon a i

fils; : ensemble : /* déja initialisé

Ti: tableau[1..N, 1..2] de entier ;

NS; : entier :=0 ;

Messages

Requéte (k, r, NS) et Autorisation(k, r), Liberation (r) ou k est I’identité du processus demandeur, r
est le numéro du service et NS est I’estampille de la requéte.

A la demande de la ressource r :
Début
Si (i<>racinej) Alors NS;++ ; envoyer (requéte (i, r, NS;) a pere;
Fsi
Fin :
A la réception d’'un message requéte (k, r, NS) de j
Début
T[k, r] :=j ; NS;:=Max (NS;, NS) ;
Si (i<>racine;) Alors envoyer (requéte (k, r, NS) a pere;
Sinon Si (f(r)=®) Alors inserer (f, k, r, NS);envoyer(autorisation (k, r, NS;) a Ti[k, r]
Sinon inserer (f, k, r, NS)
// insére k, NS dans f(r) en respectant [’ordre fifo selon NS

Fsi
Fsi
Fin:
A la réception d’'un message autorisation (K, r, NS) de j
Début

Si (i<>k) Alors envoyer(autorisation (k, r, NS;) a Ti[k, r]
Sinon NS; :=Max (NS;, NS) ;<entrer en SC pour r>
Fsi
Fin :
A la sortie de la section critique de r
Début
envoyer (liberation (r)) a pere;
Fin :
A la réception de liberation (r) de j
Début
Si (i<>racine;) Alors envoyer (liberation (r)) a pere;
Sinon supprimer (f(r)) ;// Supprime [’élément en téte de f{(r)
Si(f(r)<> @) Alors envoyer (autorisation (premier (f).client, premier (f(r).ress, NS;)
a Ti[premier (f).client]
Fin ;// lafile f(r) est de format (client, ress, NS) ou client est le nom du demandeur de ress
// d’estampille NS.

d- La complexité moyenne par requéte :

Supposons que la profondeur maximale de I’arborescence est d. Sachant que la requéte, son
autorisation et sa libération ensemble font 3d pas au maximum et au minimum 3 pas, la complexité
moyenne (3d+3)/2 messages.

e- Pour inclure le serveur comme client

La primitive de demande devient :

A la demande d’une ressource r

Début

NS;++ ;

envoyer (requéte (i, r, NS;) a pere;

/I Si i=racine;, le messgae est envoyé au méme processus car perej=i.
Fin ;

