
االتكنـولوجيــجـامعة هواري بومـدين للعلـوم و
 Université des Sciences et de la Technologie Houari Boumediene

 Faculté d’Electronique et d’Informatique
 D é p a r t e m e n t d ’I n f o r m a t i q u e

Concours d’accès au Doctorat LMD Informatique 2019 – 2020

Le 26/10/2019

Matière 2 : Réseaux + au choix : Systèmes distribués/ Sécurité des systèmes,

Coefficient 3, Spécialité : RSI

Partie : Systèmes distribués

Durée : 1h.

Exercice (10 pts=1+ 1+2+6)

On considère un système distribué composé de N processus P(i), i = 1, N où i est l’identité du

processus P(i) connectés selon une topologie physique connexe. Ces processus sont organisés selon

une arborescence logique supposée optimale et les feuilles sont organisées selon un anneau

unidirectionnel supposé optimal, établies au préalable.

On désire implémenter le modèle du client/serveur sur cette structure de telle sorte qu’un processus

feuille de l’arbre nommé S connu de tous est le serveur et les autres sont des clients. Un client qui

désire un service envoie une requête qui indique le numéro du service dans l’intervalle [0, M-1] qui

suit la structure établie vers le serveur et le message de réponse (qui contient le numéro de service

comme réponse) suit le chemin permis par la structure vers le client.

- Donner un exemple typique de schéma qui représente cette structure.

- Donner les structures de données de base à utiliser et expliquer leurs rôles

- Donner les idées de base de votre solution.

- Ecrire une solution distribuée à l’aide du langage algorithmique.

Solution de l’épreuve Systèmes distribués

Exercice (10 pts=1+ 1+2+6)

 Un exemple type de la structure

 Structures de base et rôles

Succi= … ;//il s’agit du successeur de i dans l’anneau

perei : entier ; // il s’agit du père de i dans l’arborescence

filsi : ensemble// il s’agit de l’ensemble des fils de i dans l’arborescence

Toutes ces variables sont supposées déjà initialisées.

Un paramètre important nommé routeur est utilisé dans les messages de requête et de réponse. Si le

demandeur du service est un nœud non feuille de l’arborescence, routeur sera alors initialisée à k

lorsque la requête arrive au premier nœud feuille k. k est donc le nœud par lequel la réponse

remonte dans l’arborescence vers le destinataire.

 Idées de base

- L’algorithme utilise une structure d’arborescence dont les feuilles sont organisées en un anneau

unidirectionnel, le tout est optimal. Tous les nœuds peuvent formuler une requête sauf le

serveur.

- Si le demandeur de service est un nœud non feuille de l’arborescence, la requête descend

jusqu’au premier nœud feuille de l’arborescence, celui-ci met son nom dans une variable

routeur qui est un paramètre du message de requête. Ce paramètre est aussi véhiculé dans le

message de réponse. Il sert à retrouver ce nœud feuille lorsque la réponse circule dans l’anneau,

ce qui permet à ce dernier de remonter la réponse vers la hiérarchie à travers son père sur le

chemin du destinataire.

- Si la requête est générée par un nœud feuille de l’arborescence, celle-ci circule dans l’anneau

jusqu’à l’arrivée au serveur, la réponse continue à circuler sur l’anneau jusqu’au nœud

destinataire.

 Une solution distribuée : La solution est symétrique

Contexte local de Pi

S=…. ;

M=…. ;

N=…. ; // c’est le nombre de nœuds de l’arborescence ou sinon une grande valeur.

Succi= … ;// déjà initialisé au niveau des nœuds de l’anneau.

perei : entier ; // déjà initialisé

filsi : ensemble// déjà initialisé

numsi : entier ;

Messages

requete (id : entier, nums : entier, routeur : entier) ;

reponse (id : entier, nums : entier, routeur : entier) ;

 1

 3

 2

 9

 5

 4

 7
 6

 11

 8

10

13

12

Lorsqu’un processus i demande un service ;

Début

Si (i<>S) Alors

 numsi : rand () Mod M ;

Si (filsi<> ) Alors soit k  filsi :envoyer (requete(i, numsi, 0) à k

 Sinon envoyer (requete (i, numsi, 0) succi

Fsi

Fin ;

A la réception d’un message requete (id, nums, routeur) de j

Début

Si (filsi<> ) Alors soit k  filsi :envoyer (requete(id, nums, routeur)) à k

 Sinon

 Si (i<>S) Alors Si (j=perei) Alors routeur :=i ; envoyer (requete (id, nums, routeur)) à succi

// La requête vient d’atteindre la feuille

 Sinon envoyer (requete (id, nums, routeur)) à succi

 Fsi

 Sinon numsi :=traiter_requete(id, nums) ;

Si (routeur<>i) Alors envoyer (reponse(id, numsi, routeur)) à succi

 Sinon envoyer (reponse(id, numsi, routeur)) à perei

Fsi

Fsi

Fin ;

A la réception d’un message reponse (id, nums, routeur) de j

Début

Si (i=id) Alors memoriser(nums)

Sinon

Si (filsi=) Alors

 Si (i<>routeur)Alors envoyer (reponse (id, nums, routeur)) à succi

// La réponse circule sur l’anneau

Sinon envoyer (reponse (id, nums, routeur)) à perei

 // La réponse commence à monter dans l’arborescence

Fsi

 Sinon envoyer (reponse(id, nums, routeur) à perei

 // La réponse continue à remonter dans l’arborescence

Fsi

Fin ;

- Une autre solution

Contexte local de Pi

S=…. ;

M=…. ;

N=…. ; // c’est le nombre de nœuds de l’arborescence ou sinon une grande valeur.

Succi= … ;// déjà initialisé au niveau des nœuds de l’anneau.

perei : entier ; // déjà initialisé

filsi : ensemble// déjà initialisé

Ri : Tableau [1..N] de entier ;// initialisé à faux ;

// Ri[k]= vrai signifie que le nœud k est un ancêtre du nœud feuille i.

numsi : entier

Messages

requete (id : entier, nums : entier) et reponse (id : entier, nums : entier) ;

Lorsqu’un processus i demande un service ;

Début

Si (i<>S) Alors

 numsi : rand () Mod M ;

Si (filsi<> ) Alors soit k  filsi :envoyer (requete(i, numsi) à k

 Sinon envoyer (requete (i, numsi) succi

Fsi

Fin ;

A la réception d’un message requete (id, nums) de j

Début

Si (filsi<> ) Alors soit k  filsi :envoyer (requete(id, nums)) à k

Sinon

 Si (i<>S) Alors Si (j=perei) Alors Ri[id] :=vrai ; envoyer (requete (id, nums)) à succi

// La requête vient d’atteindre la feuille

 Sinon envoyer (requete (id, nums)) à succi

 Fsi

 Sinon numsi :=traiter_requete(id, nums) ;

Si (Ri[id]=faux Alors envoyer (reponse(id, nums)) à succi

 Fsi Sinon envoyer (reponse(id, nums)) à perei

Fsi

Fin ;

A la réception d’un message reponse (id, nums) de j

Début

Si (i=id) Alors memoriser(nums)

Sinon

Si (filsi=) Alors

 Si (Ri[id]=faux)Alors envoyer (reponse (id, nums)) à succi

// La réponse circule sur l’anneau

Sinon envoyer (reponse (id, nums)) à perei

 // La réponse commence à monter dans l’arborescence

Fsi

 Sinon envoyer (reponse(id, nums) à perei

 // La réponse continue à remonter dans l’arborescence

Fsi

Fin ;

االتكنـولوجيــجـامعة هواري بومـدين للعلـوم و
 Université des Sciences et de la Technologie Houari Boumediene

 Faculté d’Electronique et d’Informatique
 D é p a r t e m e n t d ’I n f o r m a t i q u e

Concours d’accès au Doctorat 3 ième Cycle Informatique 2018 – 2019

Bon courage.

Le 24/10/2018

Matière 2 : Réseaux + au choix : Systèmes distribués/ Sécurité des systèmes,

Coefficient 3, durée 2 Heures.

(Spécialité : RSI)

Partie 2 : Systèmes distribués

Exercice 1: 4 pts= (1+0.75+0.75+1.5)

Soit la structure d’événements S= (E, <) définie par le diagramme de temps suivant :

 A a1 a2 a3 a4 a5 a6 a7

 B b1 b2 b3 b4 b5 b6 b7

 C

 c1 c2 c3 c4 c5

1- Dater les évènements avec l’horloge vectorielle de Mattern.

2- En utilisant les horloges, donner la relation d’ordre pour les couples d’évènements: (a7, b6)

(a4, c2).

3- Dans quels types d’algorithmes répartis a-t-on besoin des coupures? pourquoi est-ce

important d’avoir une coupure consistante dans ce type d’algorithmes ?

4- Donner un exemple de coupure consistante et un exemple de coupure non consistante (il

suffit de préciser le dernier évènement de la coupure au niveau de chaque processus), avec

justification pour chaque réponse (vous avez le choix pour la méthode).

Exercice2: 6pts= (1.5+1.5+3)

On considère un système distribué composé de N processus, Pi, i = 1, N ; où i est l’identité du

processus Pi connectés selon une topologie physique connexe. On cherche à construire un index

distribué d’un réseau p2p (pair à pair) sur un arbre construit avec l’algorithme d’exploration en

parallèle (il faudra construire l’arborescence). Initialement, chaque processus Pi, possède une liste

Li de ressources Ri à partager lui-même. A la fin de l’algorithme, chaque processus Pi doit avoir

comme résultat un index IndxPi indiquant les ressources détenues par les processus du sous-arbre

dont il est la racine. Tandis que le processus racine possédera un index global.

NB. Exemple d’index : une liste de la forme (Pk, Lk), le processus Pk, possède la liste de ressource

Lk.

Questions :

1-Donner les structures de données et les messages utilisés pour cet algorithme.

2-Donner le principe détaillé de l’algorithme.

3-Ecrire une solution distribuée à ce problème.

Solution de l’épreuve Systèmes distribués

Exercice 1: 4 pts =(1+0.75+0.75+1.5)

1- Datation des évènements avec l’horloge vectorielle de Mattern.

Processus A: a1(1,0,0), a2(2,0,0), a3(3,0,0), a4(4,1,0), a5(5,1,0), a6(6,4,1), a7(7,5,4).

Processus B: b1(0, 1, 0), b2(0,2,1), b3(2,3,1), b4(2,4,1), b5(2,5,1), b6(2,6,3), b7(5,7,3).

Processus C: c1(0,0,1), c2(2,5,2), c3(2,5,3), c4(2,5,4), c5(3,5,5).

2- Relations d’ordre des couples d’évènements:

a7(7,5,4) et b6(2,6,3) sont deux évènements indépendants.

a4(4,1,0) et c2(2,5,2) sont deux évènements indépendants.

3- Les coupures sont utilisées dans les algorithmes de calcul d’état global. Une coupure

consistante permet de capturer un état global cohérent, et ce dernier permet de faire un

redémarrage (après panne) cohérent et sans perte d’informations.

4- Un exemple de coupure consistante et un exemple de coupure non consistante :

 C2

 A a1 a2 C1 a3 a4 a5 a6 a7

 B b1 b2 b3 b4 b5 b6 b7

 C c1 c2 c3 c4 c5

Exemple de coupure consistante : C1 (Justification : pour tout évènement e’ de réception de

message inclue dans la coupure, l’évènement e d’envoi du même message est aussi dans la

coupure)

Exemple de coupure inconsistante : C2 (Justification : l’évènement c2 réception d’un

message est inclus dans l’état du processus C alors que l’évènement b5 d’envoi du même

message sur le processus B, ne fait pas partie de l’état de ce dernier).

Exercice2: 6pts= (1.5+1.5+3)

1- Les structures de données et les messages

Les structures :

On va définir :

- Une structure struct proRes : <Pk, Lk> avec Lk : liste de Ressources Rm détenues par le

processus Pk.

- Une liste de données IndxPi=Liste d’éléments de type struct proRes(Pk, Lk). Pk est

l’identité d’un processus donné et Lk, une liste de ressources détenues par le processus Pk.

Les messages :

- explore () ;

- reponse (IndxPj : Liste de structure proRes) ;

2- Le principe de l’algorithme

Initialement, chaque processus possède sa propre liste de ressources à partager lui-même, dans une

structure de type proRes. Tandis que la structure indexPi est initialisée à proResi et va être mise à

jour avec la construction de l’arbre. On va utiliser l’algorithme d’exploration en parallèle pour

construire l’arbre et pour remonter les indexes locaux des feuilles vers la racine. Lors de la phase

d’exploration, le processus P0 envoie un message explore à tous ses voisins. Tout processus Pi qui

reçoit le message explore () pour la première fois, considère l’émetteur comme son père et envoie

lui-même le même message à tous ses voisins. Si pas de voisins, le processus Pi répond à son père

en envoyant son propre index indexPi (le message reponse(indexPi)). Pour tout message redondant

explore() reçu, le processus Pi répond immédiatement à l’émetteur Pj par un message Réponse

(null).

A la réception d’un message reponse (indexPj) sur Pi, si indexPj n’est pas null, l’index local

indexPi est mis à jour (indexPi=indexPi union indexPj) et le processus Pj est ajouté dans une liste

filsi. Sinon le message est simplement ignoré. L’algorithme se termine quand le processus racine de

l’arbre reçoit les réponses de tous ses voisins.

3- L’algorithme :

Contexte local du processus Pi :

Les variables

proResi :<structure déjà initialisée par la liste de ressources partagées par Pi>.

indexPi : liste de structures de type prosRes.

voisinsi : ensemble des identités des processus voisins de Pi.

perei : identité du processus père de Pi.

filsi : ensemble des identités des processus fils de Pi.

reçui : booleen.

nbsucci : entier.

Les messages :

- explore ()

- reponse (indexj : liste de structures proResi)

Initialisation :

Début

reçui :=false ; voisinsi :=<les voisins de pi> ; nbsucci :=|voisinsi|; indexPi :=proResi;

Si (i=0) Alors

 reçui :=true ; perei :=i ;

  k  voisinsi : envoyer (explore ()) à Pk

Fsi

Fin ;

A la réception d’un message explore() de Pj :

Début

 Si (reçui=true)

Alors envoyer (reponse(null)) à Pj

Sinon

 perei :=j ; reçui :=vrai ;

 Si (voisinsi <>null) Alors  k  voisinsi : envoyer (explore ()) à Pk

 Sinon envoyer reponse (indexPi) à Pperei.

 Fsi

 Fsi

Fin ;

A la réception d’un message reponse (indexPj) de Pj :

Début

 nbsucci :=nbsucci-1 ;

 Si (indexj <>null) Alors

 filsi :=filsi + j ;

 indexPi := indexPi + indexPj ;

 Fsi ;

 Si (nbsucci=0) Alors Si (perei=i) Alors « fin de l’algorithme »

 Sinon envoyer reponse(indexPi) à Pperei ;

 Fsi

 Fsi

Fin ;

االتكنـولوجيــجـامعة هواري بومـدين للعلـوم و
Université des Sciences et de la Technologie Houari Boumediene

 Faculté d’Electronique et d’Informatique
D é p a r t e m e n t d ’I n f o r m a t i q u e

Concours d’accès au Doctorat 3 ième Cycle Informatique 2017 – 2018

Le 29/10/2017

Matière 2 : Réseaux + au choix : Systèmes distribués/ Sécurité des systèmes,

Coefficient 3, durée 2 Heures.

(Spécialité : RSI)

Partie 2 : Systèmes distribués

Exercice 1:

Soit la structure d’événements S= (E, <) définie par le diagramme de temps suivant :

1- Dater les événements de la structure en utilisant les horloges vectorielles de Mattern.

2- Donner la relation entre les couples d’événements suivants en utilisant les horloges vectorielles :

(b3, c4) ; (a1, c3).

3- Vérifier la nature de chacune des coupures C1 et C2 à l’aide du théorème connu dans ce

contexte.

4- Pour les coupures consistantes, donc l’état global correspondant est consistant, donner les

messages en transit pour chacune et pour chaque canal (émetteur--récepteur).

Exercice 2 :

1. Proposer un principe de construction d’une arborescence couvrante.

2. Adapter le principe précédent pour proposer un algorithme d’élection. Donner le principe et

l’algorithme correspondant à votre proposition.

3. Discuter clairement les avantages et les inconvénients de votre proposition ainsi que sa tolérance

aux défaillances.

a1 a2 a3 a4 a5

b1
b2

b3

c1 c2 c3 c4

C1 C2

I

J

K

Solution de l’épreuve Systèmes distribués

Exercice 1 : 8pts =(2 + 2 +3 +1)

1- Datation des événements

a1= 1 a2= 2 a3= 3 a4= 4 a5= 5

 1 1 1 1 2

 0 0 1 1 3

b1= 0 b2= 0 b3= 3

 1 2 3

 0 0 0

c1= 0 c2= 0 c3= 0 c4= 4

 0 2 2 2

 1 2 3 4

2-Relation de précédences entre événements en utilisant les horloges vectorielles

 3 4

- (b3<c4) car 3 = H(b3) < > H(c4) = 2

 0 4

 1 0

- (a1< c3) car 1 = H(a1) < > H(c3) = 2

 0 3

3- Vérification de la nature de chacune des coupures C1 et C2 à l’aide du théorème.

 1 0 0 1

o H(C1)= Max (H(a1), H(b2), H(c3))= Max(1 2 2)= 2

 0 0 3 3

 1

Pour que C1 soit cohérente, H(C1) doit être égale à (H(a1[1], b2[2], c3[3])= 2

 3

Elle est égale  C1 est cohérente.

 2 3 4 4

o H(C2)= Max (H(a2), H(b3), H(c4)) = Max (1 3 2)= 3

 0 0 4 4

 2

Pour que C2 soit cohérente, H(C2) doit être égale à (H(a2[1], b3[2], c4[3])= 3

 4

 Ce n’est pas le cas  C2 n’est pas cohérente.

4- Messages en transit

Pour les coupures consistantes, donc l’état global correspondant est consistant, les messages en

transit pour la coupure C1 et pour chaque canal sont :

La topologie est complète, étant donné que les messages s’échangent entre tous les processus.

Au niveau de I :

Etat du canal qui le relie avec J est : 

Etat du canal qui le relie avec K est : {(c1, a3) ; (c3,a5)}

Au niveau de J :

Etat du canal qui le relie avec I est : 

Etat du canal qui le relie avec K est : 

Au niveau de K :

Etat du canal qui le relie avec I est : 

Etat du canal qui le relie avec J est : 

Exercice 2 : Correction non disponible pour le moment.

االتكنـولوجيــجـامعة هواري بومـدين للعلـوم و
 Université des Sciences et de la Technologie Houari Boumediene

 Faculté d’Electronique et d’Informatique
 D é p a r t e m e n t d ’I n f o r m a t i q u e

Concours d’accès au Doctorat 3 ième Cycle Informatique 2016 – 2017

Le 26/10/2016

Matière 2 : Réseaux + au choix : Systèmes distribués/ Sécurité des systèmes,

Coefficient 1, durée 2 Heures.

(Spécialité : RSI)

Partie 2 : Systèmes distribués

Exercice 1 : (5 pts= 1,5 + 1+ 1,5 + 1)

Soit la structure d’événements S= (E, <) définie par le diagramme de temps suivant :
1- Dater les événements de la structure en utilisant les horloges vectorielles de Mattern.

2- Donner la relation entre les couples d’événements suivants en utilisant les horloges vectorielles :

(e13, e32) ; (e11, e35).

3- Vérifier la nature de chacune des coupures C1 et C2.

4- Pour les coupures consistantes, donc l’état global correspondant est consistant, donner les

messages en transit pour chacune et pour chaque canal.

Exercice 2 : (5 pts= 2 + 1+ 2)
On suppose un ensemble de processus liés par une structure connexe définie par le réseau physique de la

figure ci-dessous. Pour cela, chaque processus possède trois variables : succi, perei et filsi. Si succi= -1, cela

veut dire que le processus est un nœud feuille de l’arbre. Si perei=i, cela veut dire que le processus fait partie

de l’anneau. Chaque arbre contient seulement un nœud racine et un nœud feuille.

On désire réaliser le modèle client/serveur de telle sorte qu’un seul processus S (connu de tous) de l’anneau

est serveur et que seulement les nœuds feuilles des différents arbres sont des clients. Donc, les autres nœuds

de l’anneau servent d’intermédiaires pour les requêtes et les réponses. Les services demandés/fournis sont

numérotés de 1 à M et le serveur retourne le numéro de service demandé comme réponse à ce service. Les

différents messages empruntent les voies de la structure physique définie pour arriver à destination.

-

-

-

-

I

J

K

 e21 e22 e23 e24 e25

e31 e32 e33 e34 e35

 e11 e12 e13 e14

 C1 C2

A- Donner le principe de cet algorithme.

B- Lister les différentes primitives de traitement

des messages et expliquer leurs paramètres.

C- Ecrire cet algorithme.

Correction

Exercice 1 : (5 pts= 1,5 + 1+ 1,5 + 1)
1- Datation des événements suivants en utilisant les horloges de Mattern.

2- Relation entre les couples d’événements suivants en utilisant les horloges de Mattern :

- (e13// e32) car (3 0 0) = H(e13) // H(e32) = (2 0 2)

- (e11< e35) car (1 0 0) = H(e11) < H(e35) = (2 4 5)

3- Nature de chacune des coupures C1 et C2 en utilisant les horloges de Mattern.

Nature de la coupure C1:

H(C1)= Max (H(e01), H(e22), H(e33))

 = Max((0 0 0), (1 2 1), (2 0 3))= (1 2 3)

X= (H(e01[1], H(e22[2]), H(e33[3]))= (0 2 3)

C1 n’est pas consistante car H(C1) <> X.

Nature de la coupure C2:

H(C2)= Max (H(e13), H(e24), H(e34))

 = Max((3 0 0), (2 4 3), (2 0 4))= (3 4 4)

X= (H(e13[1], H(e24[2]), H(e34[3]))= (3 4 4)

C2 est consistante car H(C2) = X.

Ou bien

C1 n’est pas consistante car l’événement de réception e21 appartient à la coupure C1 et son

événement d’émission e11 n’y appartient pas. De même, respectivement, que e32 avec e12.

C2 est constante car chaque événement appartenant à la coupure C2, tous les événements qui le

précèdent causalement appartiennent aussi à C2.

4- Les messages en transit de la coupure C2 (seule coupure consistante):

au niveau du processus I : (J->I : ) ; (K->I : (e34, e14)).

au niveau du processus J : (I->J : (e13, e25)) ; (K->J : ).

au niveau du processus K : (I->K : ) ; (J->K : (e24, e35)).

Exercice 2 : (5 pts= 2 + 1+ 2)

1- Le principe de fonctionnement de l’algorithme :

Un processus client désirant un service, le choisie dans l’intervalle [0..M-1] et véhicule une requête,

contenant entre autres le numéro du service et l’identité du père de ce nœud, à son père. Cette requête suit la

structure de l’anneau jusqu’à l’arrivée au serveur s. Donc, chaque nœud la recevant la transmis à son

successeur s’il n’est pas lui-même le serveur. Le serveur, quand il reçoit cette requête, la sert et renvoie un

message de réponse à son fils si celui-ci est destinataire final sinon à son successeur avec comme destinataire

le père du demandeur. La réponse suit la structure jusqu’au père du nœud demandeur. Celui-ci la transmit à

son fils, qui à tour mémorise la réponse localement.

I

J

K

 e21 e22 e23 e24 e25

e31 e32 e33 e34 e35

 e11 e12 e13 e14

 C1 C2

 1

 0

 0

 2

 0

 0

 0

 0

 1

 2

 0

 2

 2

 0

 3

 2

 0

 4

 2

 4

 5

 3

 0

 0

 4

 0

 4

 1

 1

 0

 1

 2

 1

 2

 3

 3

 2

 4

 3

 3

 5

 3

2- Les différentes primitives et leurs paramètres.

Le texte de l’algorithme est symétrique car tous les processus utilisent les mêmes messages et leurs

comportements diffèrent selon leurs identités et les événements qui se produisent localement.

Trois primitives sont utilisées :

- A la demande de service ;

- A la réception de requête (orig, s) de Pj ; //orig représentent le père du nœud feuille demandeur de

 service de numéro s.

- A la réception de reponse (dest, s), // orig représentent le père du nœud feuille demandeur de

 service de numéro s.

3- Une solution distribuée à ce problème :

Contexte de Pi

Const Serveur=… ;// c’est le nom du serveur.

M=… ;

Var perei : entier ; // déjà initialisé à père de i s’il existe, sinon à i

 filsi : ensemble : /* déjà initialisé à fils de i s’il y a lieu sinon à vide.

 succi : entier ; // déjà initialisé

 si : entier ;

Messages

- requête (orig, s)

- reponse (dest, s)

A la demande d’un service

entier si;

Début

Si (succi=-1) // le nœud feuille de l’arbre.

 Alors si:= choisir_service (M) ; envoyer (requête (perei, si) à perei

Fsi

Fin ;

A la réception d’un message requête (orig, s) de j

Début

Si (i<>serveur)

 Alors envoyer (requête (orig, s) à succi

 Sinon si := servir_requete(orig, s) ; Si (orig = i) Alors envoyer (reponse (orig, si) à filsi

Sinon envoyer (reponse (orig, si) à succi

 Fsi

 Fsi

Fin ;

A la réception d’un message reponse (dest, s) de j

Début

Si (dest =i) Alors envoyer (reponse (dest, s) à filsi

 Sinon Si dest=perei Alors memoriser(s)

 Sinon envoyer (reponse (orig, si) à succi

 Fsi

Fsi

Fin :

االتكنـولوجيــجـامعة هواري بومـدين للعلـوم و
 Université des Sciences et de la Technologie Houari Boumediene

 Faculté d’Electronique et d’Informatique
 D é p a r t e m e n t d ’I n f o r m a t i q u e

Concours d’accès au Doctorat LMD Informatique, 2014/2015

Epreuve de Systèmes et Réseaux
 (Option : Systèmes Informatiques) USTHB le 15/10/2014

Partie : Systèmes répartis

On désire gérer deux types différents de ressources réutilisables R1 et R2 avec respectivement n1 et n2 instances.

Chaque processus ne peut demander et acquérir qu’un type de ressource à la fois et au nombre désiré mais ne

peut exprimer de nouvelle demande que s’il n’a pas de ressources acquises.

Pour cela, on utilise un serveur central centr dont les rôles sont de recevoir les requêtes et les libérations des

clients et de les orienter vers le serveur secondaire approprié. Il permet aussi le contrôle des requêtes des clients.

On utilise alors deux serveurs secondaires : Serv1 gère la ressource R1 et Serv2 gère la ressource R2. On

suppose que les clients ont des liens physiques directs avec centr et avec les deux autres serveurs et que centr a

des liens physiques directs avec les deux serveurs.

1- Lister les différents messages au niveau de chaque type de processus et expliquer leurs paramètres.

2- Donner le principe de cet algorithme.

3- Ecrire l’algorithme

Correction de l’Epreuve de Systèmes Distribués

du Concours d’accès au Doctorat LMD Informatique, 2014/2015

Correction : (10 pts= 2+ 3+5)

1- Liste de messages :

Au niveau du client i :

demande (k, nb, source), où k est le numéro de la ressource demandée, nb le nombre d’instances

demandées et source l’identité du processus demandeur.

autoris(k, ok), où k est le numéro de la ressource concernée par l’autorisation et ok est un

booléen, sa valeur vrai indique l’autorisation d’accès aux ressources et sa valeur faux indique

une interdiction faute d’une demande ou une acquisition en cours.

liberer (k, nb, source), où k est le numéro de la ressource concernée par la libération, nb le

nombre d’instances libérées de la ressource et source l’identité du processus qui libère ces

instances.

Au niveau de Serv[k]

demande (k, nb, source)

autoris(k, ok), la valeur de ok est toujours vrai

liberer (k, nb, source)

Au niveau de centr

demande (k, nb, source)

liberer (k, nb, source)

autoris(k, ok), la valeur de ok est toujours faux si ce message est envoyé.

2- Principe de l’algorithme

L’algorithme est composé de trois types de processus : les clients qui demandent l’une des deux ressources, le

processus centr qui reçoit les requêtes des clients et les deux serveurs qui servent les clients.

- Un client qui désire nb instances d’une ressource R[k], envoie sa demande contenant l’identité et le

nombre d’instances de la ressource et sa propre identité au processus centr et attend la réception d’une

autorisation d’accès à cette ressource. Une fois reçue cette autorisation, il accède à cette ressource et à la

fin de son utilisation, il envoie un message de libération vers le serveur concerné.

- Le processus centr, en recevant une requête d’un client donné, il vérifie si se processus n’a pas de

demande en instance, auquel cas il ne lui répond pas (ou il lui répond négativement, c’est une autre

option) ; dans le cas contraire, il enregistre sa requête localement et l’aiguille vers le serveur approprié.

Quand ce serveur reçoit une libération d’un client il note localement cette libération et l’aiguille vers le

serveur concerné.

- Chaque serveur k entretient une variable qui indique à tout moment le nombre d’accès disponibles pour

la ressource k (initialement n1 pour R[1] et n2 pour R[2]) et une file d’attente pour la ressource gérée.

Quand le serveur k reçoit une requête sur la ressource qu’il gère, il retourne immédiatement une

autorisation au client concerné si le nombre d’accès disponibles pour la ressource n’est pas suffisant

auquel cas il débite le nombre à allouer du nombre d’instances libres. Sinon, il insère cette requête dans

la file d’attente associée à R[k] de manière fifo. A la réception d’un message de libération de la

ressource R[k], le serveur k récupère le nombre d’instances libérés et examine s’il peut satisfaire des

processus selon l’ordre fifo pour leurs envoyer des messages d’autorisations.

3- Texte de l’algorithme

Un processus peut ne pas libérer à la fois toutes les instances déjà acquises.

Au niveau d’un client i

Contexte du client i

Const Serv[1]=… ;Serv[2]=…. ;Centr=… ;

A la demande de nb instances de la ressource R[k] ;

Début

envoyer (demande (k, nb i) à centr ;

Fin ;

A la réception de autoris(k, ok) de Pj ;

Début

 Si ok Alors

< Accéder aux instances de la ressource (k)>

Sinon < retarder demande à la libration de toutes les

instances acquises>

Fsi

Fin ;

A la fin d’utilisation de nb instances de la ressource(k) ;

Début

envoyer (libérer (k, nb, i)) à Centr

Fin ;

Au niveau du centr

Contexte de centr

Const Serv[1]=… ;Serv[2]=…. ;

Var f_acquis :file de format (id, nb) + ses procedures ;

/* file de processus utilisant des ressources */

 f_wait : file de format (id, nb)+ses procédures ;/*

file d ‘attente de ressources */

A la réception de demande (k, nb, source) de Pj;

Début

Si non exite(f-acquis, source) alors inserer (f-acquis,

nb, source) ; envoyer (demande (k, nb, source) à

Serv[k] ; Sinon envoyer (autoris(k, faux)

Fin ;

A la réception de libérer (k, nb, source) de Pj;

Début

supprimer (f-acquis, nb, source) ; envoyer (libérer (k,

nb, source) à Serv[k] ;

Fin ;

Au niveau de Serv[k]

Contexte de Serv[k]

NbAccesDispoi : entier ;nb1=…nb2=…. ;

f[k] : file d’attente de format (id, nb) + ses

procédures d’accès;

Initialisation

Début

Si (k=1) Alors NbAccesDispoi :=nb1 fsi;

Si (k=2) Alors NbAccesDispoi :=nb2 fsi ;

Fin ;

A la réception de demande (k, nb, source) de Pj;

Début

Si non vide (f[k])et (NbAccesDispoi >=nb) Alors

 envoyer (autoris(k, vrai)) à source

NbAccesDispoi :=NbAccesDispoi –nb ;

Sinon inserer(f[k],nb, source) // Ordre fifo

Fsi

Fin ;

A la réception de liberer (k, nb, source) de Pj;

Var m : entier ;

Début

NbAccesDispoi :=NbAccesDispoi +nb ;

tantque (f[k]<>) et(premier (f[k]).nb<=

NbAccesDispoi)Alors

NbAccesDispoi :=NbAccesDispoi – premier

(f[k]).nb ; supprimer(premier(f[k]);

 envoyer ((autoris(k, vrai)) à premier (f[k]).id

Fait

Fin ;

االتكنـولوجيــجـامعة هواري بومـدين للعلـوم و
 Université des Sciences et de la Technologie Houari Boumediene

 Faculté d’Electronique et d’Informatique
 D é p a r t e m e n t d ’I n f o r m a t i q u e

Concours d’accès au Doctorat LMD Informatique, 2013/2014

Epreuve de Systèmes distribués
 (Option : Systèmes Informatiques) USTHB le 20/10/2013

Exercice 1 : (9 pts=1+1+2+1+1.5+1.5+1)
A/ Répondre aux questions suivantes :

a1- Quelle est l’utilité de l’approche micro - noyau dans la structuration des systèmes distribués ?

a2- Décrire comment utiliser le mécanisme d’appel de procédure à distance pour l’implémentation du modèle

client/serveur.

B/ On considère la trace d’exécution donnée par la structure d’événements de la Figure suivante. Il s’agit du

résultat d’une exploration en parallèle des processus P1, P2,…P5 (reliés par une topologie de communication

connexe donnée) sans transport d’information de contrôle.

b1- Déduire la topologie qui relie ces processus.

b2- Déduire le nombre de messages redondants et l’arborescence construite.

b3- Si on considère le transport d’informations de contrôle, donner les messages redondants qui seront

éliminés ?

b4- Dater uniquement les événements du passé de la coupure à l’aide des horloges de Mattern.

b5- Donner la nature de la coupure C en se basant sur les horloges de Mattern.

Exercice 2 : (11 pts= 2.5 + 1 + 4.5 + 1 + 2)
On considère un système distribué composé de N processus P(i), i = 1, N où i est l’identité du processus P(i)

connectés selon une topologie physique connexe. Ces processus sont organisés selon un anneau logique

bidirectionnel (i.e. chaque nœud ne peut communiquer qu’avec son prédécesseur et son successeur dans

l’anneau) supposée optimale (i.e. chaque voisin dans l’anneau est aussi un voisin dans le réseau).

On désire implémenter un service d’exclusion mutuelle pour trois ressources différentes sur cette structure en

supposant qu’un processus dans l’anneau est le serveur de tous les autres processus. Chaque processus désirant

utiliser une ressource donnée, la demande au serveur en envoyant sa requête, qui contient le numéro de la

ressource et une estampille locale (selon les horloges de Lamport), à travers la structure selon un sens choisi de

manière aléatoire. Le serveur répond dans le sens inverse du sens d’arrivée de la demande. Tous les autres

messages liés au service d’exclusion mutuelle doivent circuler à travers la structure logique établie.

a- Donner le principe de fonctionnement de l’algorithme

b- Lister les différents messages à utiliser.

c- Ecrire l’algorithme.

d- Donner la complexité moyenne en nombre de messages pour réaliser une section critique.

e- Donner les modifications nécessaires pour inclure le serveur comme client ?

Bon courage

 e31 e32

 e41 e42 e43 e44

 e51 e52 e53 e54 e55

 C

e21 e22 e23

P1

P2

P3

P4

P5

P6

e11 e12 e13 e14 e15 e16 e17

e61 e62 e63 e64 e65

Correction de l’Epreuve de Systèmes Distribués

du Concours d’accès au Doctorat LMD Informatique, 2013/2014

Exercice 1 : (9 pts=1+1+2+1+1.5+1.5+1)
A/

a1-

- Simplification dans la conception et extension des systèmes distribués (SDs)

- Séparation entre les services de bases communs des SDs et des services implémentés par des

serveurs spécifiques au besoin

a2- Dans le modèle client/serveur, le serveur implémente un certain nombre de services qu’il fournit

aux clients. On peut imaginer l’implémentation de chaque service par une procédure que le serveur

invoque quand il reçoit la requête du client. Ce qui veut dire que le serveur dispose d’une table de

correspondance entre le nom du service demandé par le client et le nom de la procédure qui le réalise.

Le résultat du service est retourné par la procédure au serveur, ce dernier le fait passer au client.

On peut utiliser le mécanisme d’appel de procédure à distance pour l’implémentation du modèle

client/serveur comme suit : Le client fait appel directement à la procédure qui réalise le service par son

nom en lui fournissant les paramètres nécessaires. La procédure lui retourne directement le résultat.

B/
b1- La topologie b2- Nombres messages redondants : 8.

 -L’arborescence

b3- Nombre messages redondants éliminés :

(1,4) ; (2,1) ;

Si 6 reçoit en premier de 1 Alors

(6,5) ; (6,2) ; Si 5 reçoit en premier de 1 Alors (5, 6) ; (5,3) Sinon /* reçoit de 3 */(1,5) Fsi

 Sinon

Si 6 reçoit en premier de 2 Alors

(5,6) ; (6,1) ; (6,5) ; Si 5 reçoit en premier de 1 Alors (5, 6); (5,3) Sinon /* reçoit de 3*/(1,5) Fsi

 Sinon

Si 5 reçoit en premier de 3 Alors (5, 1) ; (6,5) ; (6,1) ; (6,2)

 Sinon

Si 5 reçoit en premier de 1 Alors (5, 1) ; (6,5) ; (6,1) ; (6,2) ; (5,3) Fsi

 Fsi

 Fsi

 Fsi ;

 (6, 5) si le nœud 6 reçoit le message d’exploration en premier de 5 ou de 1 au lieu de 2.

b4- Datation des événements à l’aide des horloges de Mattern:
H(e11)=(1 2 0 1 0 0) ;H(e12)=(2 2 0 1 0 0) ; H(e13)=(3 2 0 1 0 0) ;H(e14)=(4 2 0 1 0 0) ;H(e15)=(5 2 0 3 0 0) ;

H(e16)=(6 2 2 3 2 0) ; H(e17)=(7 2 3 3 2 2) ;

H(e21)=(0 1 0 1 0 0) ;H(e22)=(0 2 0 1 0 0) ; H(e23)=(0 3 0 1 0 0) ;

H(e31)=(0 0 1 2 0 0) ;H(e32)=(0 0 2 2 0 0) ;

H(e41)=(0 0 0 1 0 0) ;H(e42)=(0 0 0 2 0 0) ; H(e43)=(0 0 0 3 0 0) ; H(e44)=(2 2 0 4 1 0) ;

H(e51)=(0 0 2 2 1 0) ;H(e52)=(0 0 2 2 2 0) ; H(e53)=(0 0 2 2 3 0) ; H(e54)=(3 2 2 2 4 0) ; H(e55)=(3 3 2 2 5 3) ;

H(e61)=(0 3 0 1 0 1) ;H(e62)=(0 3 0 1 0 2) ; H(e63)=(0 3 0 1 0 3) ; H(e64)=(0 3 2 2 3 4) ; H(e65)=(4 3 2 2 3 5) ;

 4

 3

2

2

 6 1

 5

 4

 3

2

2

 6
 1

 5

b5- Vérification de la nature de C à l’aide des horloges de Mattern :

H(C)= Max (H(e13), H(e23), H(e32), H(e43), H(e(54), H(e(65))

 = Max ((3 2 0 1 0 0) , (0 3 0 1 0 0), (0 0 2 2 0 0), (0 0 0 3 0 0) , (3 2 2 2 4 0), (4 3 2 2 3 5))
 =(4 3 2 3 4 5)

Pour que C soit cohérente, H(C) doit être égale à :

(H(e13)[1], H(e23[2]), H(e32)[3], H(e43)[4], H(e(54)[5], H(e(65)[6])= (3 3 2 3 4 5) ;

 Elle est différente  C n’est pas cohérente.

Exercice 2 : (11 pts= 2.5 + 1 + 4.5 + 1 + 2)

a- Le principe de fonctionnement de l’algorithme :

Le serveur entretient trois files d’attente fifos, une par ressource une entrée par ressource qui indique si

celle-ci est libre ou occupée.

Etant donné que le processus serveur est situé sur l’anneau, la requête portant sur la ressource critique

désirée (soit r) estampillée à l’aide des horloges de Lamport (H(r)) et accompagnée de l’identité du

nœud demandeur (soit k) est envoyée le long de l’anneau dans un sens choisi aléatoirement. Cette

requête est transmise de proche en proche jusqu’à l’arrivée au serveur. Celui-ci retourne

immédiatement une autorisation à travers le nœud qui lui a transmis cette requête (soit j) si la file f(r)

est vide (i.e. la ressource est libre). Puis enfile la requête avec les informations (k, r, j, H(r)) dans la file

f(r). Le processus destinataire d’une autorisation, quand il la reçoit, accède à sa SC.

Un processus k qui sort de sa section critique pour une ressource r, véhicule un message de libération

accompagné de (jk r) dans un sens choisi aléatoirement. Quand le serveur reçoit ce message, il purge

le premier élément de la file f(r) et si la file n’est toujours pas vide, il véhicule un message

d’autorisation sur le chemin indiqué par la requête.

a- Les différents messages à utiliser.

Trois messages sont utilisés :

Requête (k, r, NS) et Autorisation (k, r), Liberation (r) où k est l’identité du processus demandeur, r est

le numéro du service et NS est l’estampille de la requête.

b- Une solution distribuée à ce problème :

On suppose que le coordinateur est nommé serveur.

Contexte de Pi

Const serveuri= …. ; N=… ;// N : Nombre de processus du réseau

succi : entier ; /* déjà initialisé à successeur de i dans l’anneau

predi : entier : /* déjà initialisé à prédécesseur de i dans l’anneau

NSi : entier :=0 ;

Messages

Requête (k, r, NS) et Autorisation(k, r, NS), Liberation (r) où k est l’identité du processus demandeur, r

est le numéro du service et NS est l’estampille de la requête.

A la demande de la ressource ® :

Début

Si (i<>serveuri) Alors NSi++ ; l :=choisir (succi, predi) ; envoyer (requête (i, r, NSi) à l

Fsi

Fin :

A la réception d’un message requête (k, r, NS) de j

Var l : entier ;

Début

NSi :=Max (NSi, NS) ;

Si (i<>serveuri) Alors si j= predi alors l := succi sinon l := predi Fsi ; envoyer (requête (k, r, NS) à l

 Sinon Si (f(r)=) Alors inserer (k, r, j, NS); envoyer(autorisation (k, r, NSi) à j

 Sinon inserer (k, r, j, NS)

// insère le triplet (k, j, NS) dans f(r) en respectant l’ordre fifo

selon NS

 Fsi

Fsi

Fin :

A la réception d’un message autorisation (k, r, NS) de j

Var l : entier ;

Début

Si (i<>k) Alors si(j= predi) alors l := succi sinon l := predi Fsi ; envoyer(autorisation (k, r) à l

 Sinon NSi :=Max (NSi, NS) ;<entrer en SC pour r>

Fsi

Fin :

A la sortie de la section critique de r

Var l : entier ;

Début l :=choisir (succi, predi) ; envoyer (liberation (r)) à l Fin :

A la réception de liberation (r) de j

Var l : entier ;

Début

Si (i<>serveuri) Alors si(j= predi) alors l := succi sinon l := predi Fsi ; envoyer (liberation (r)) à l

 Sinon supprimer (f(r)) ;// Supprime l’élément en tête de f(r)

 Si(f(r)<>) Alors envoyer (autorisation (premier (f(r)).k, r, NSi)

à premier (f(r).j)

Fin ;// la file f(r) est de format (k, j, NS) où k est le nom du demandeur de r, j est le nœud qui a

transmis la requête au serveur et NS est l’estampille.

c- La complexité moyenne par requête :

3*N/2 messages en supposant que chaque message (demande, autorisation et libération) parcoure la

moitié de l’anneau.

 Pour inclure le serveur comme client

La primitive de demande devient :

A la demande de la ressource (r) :

Début

Si (i<>serveuri) Alors NSi++ ; l :=choisir (succi, predi) ; envoyer (requête (i, r, NSi) à l

Sinon Si (f(r)<>) Alors inserer (k, r, j, NS); <Entrer en SC pour r>

 Sinon inserer (k, r, j, NS)

 Fsi

Fsi

Fin ;

A la sortie de la section critique de r

Var l : entier ;

Début Si (i<>serveuri) Alors l :=choisir (succi, predi) ; envoyer (liberation (r)) à l

Sinon

supprimer (f(r)) ;// Supprime l’élément en tête de f(r)

 Si(f(r)<>) Alors envoyer (autorisation (premier (f(r)).k, r, NSi)

à premier (f(r).j)

 Fsi

 Fsi

Fin ;

االتكنـولوجيــجـامعة هواري بومـدين للعلـوم و
 Université des Sciences et de la Technologie Houari Boumediene

 Faculté d’Electronique et d’Informatique
 D é p a r t e m e n t d ’I n f o r m a t i q u e

Concours d’accès au Doctorat LMD Informatique, 2012/2013

Epreuve de Systèmes distribués

(Option : Systèmes Informatiques)

 USTHB le 26/11/2012

Exercice 1 : (9 pts=1+1.5+2+1+1.5+2)

A/ Répondre aux questions suivantes :

- Pourquoi sont structurés les algorithmes distribués de manière non déterministe ?

- Quel est l’handicap des horloges logiques de Lamport? Qu’apportent de nouveau les horloges vectorielles

de Mattern?

B/ Soit la structure d’événements S= (E, <) définie par le diagramme de temps suivant :
1- Dater les événements de la structure en utilisant les horloges vectorielles de Mattern.

2- Donner la relation entre les couples d’événements suivants en utilisant les horloges vectorielles :

(c3, b4) ; (a1, c3).

3- Vérifier la nature de chacune des coupures C1 et C2 à l’aide du théorème connu dans ce

contexte.

4- Pour les coupures consistantes, donc l’état global correspondant est consistant, donner les

messages en transit pour chacune et pour chaque canal.

Exercice 2 : (11 pts= 2.5 + 1 + 4.5 + 1 + 2)

On considère un système distribué composé de N processus P(i), i = 1, N où i est l’identité du

processus P(i) connectés selon une topologie physique connexe. Ces processus sont organisés selon

une arborescence logique (i.e. chaque nœud ne peut communiquer dans les deux sens qu’avec son

père et ses fils, s’il y a lieu, dans l’arborescence) supposée optimale (i.e. chaque voisin dans

l’arborescence est aussi un voisin dans le réseau).

On désire implémenter un service d’exclusion mutuelle pour deux ressources différentes sur cette

structure en supposant que le processus racine de l’arborescence est le serveur de tous les autres

processus. Chaque processus désirant utiliser une ressource donnée, la demande au serveur en

envoyant sa requête, qui contient le numéro de la ressource et une estampille locale (selon les

horloges de Lamport), à travers la structure. Tous les autres messages liés au service d’exclusion

mutuelle doivent circuler à travers la structure logique établie.

a- Donner le principe de fonctionnement de l’algorithme

b- Lister les différents messages à utiliser.

c- Ecrire l’algorithme.

d- Donner la complexité moyenne en nombre de messages pour réaliser une section critique.

e- Que faut-il modifier pour inclure le serveur comme client ?

Bon courage

I

J

K

 b1 b2 b3 b4

 c1 c2 c3

 a1 a2 a3 a4 a5

 C1 C2

Correction de l’Epreuve de Systèmes Distribués

du Concours d’accès au Doctorat LMD Informatique, 2012/2013

Exercice 1 : (9 pts=1+1.5+2+1+1.5+2)

A/ - Les algorithmes distribués sont structurés de manière non déterministe pour attendre et

répondre aux événements qui peuvent se produire de manière asynchrone.

- Ils ne peuvent pas déduire la précédence entre les événements par simple comparaison de

leurs estampilles. Les horloges de Matern remédient à ce problème, ils permettent de

déduire si les événements sont concurrents ou séquentiels par simple comparaison des

estampilles.

B/ Soit la structure d’événements S= (E, <) définie par le diagramme de temps suivant :

1- Datation des événements à l’aide des horloges de Mattern:

2- Relation de précédences entre événements en utilisant les horloges vectorielles :

 1 4

- (c3< b4) car 2 = H(c3) <= H(b4) = 4

 3 3

 1 1

- (a1< c3) car 0 = H(a1)<= H(b3) = 2

 0 3

4- Vérification de la nature de chacune des coupures C1 et C2 à l’aide du théorème.

 0 1 1 1

o H(C1)= Max (H(a0), H(b2), H(c3))= Max(0 2 2)= 2

 0 0 3 3

 0

Pour que C1 soit cohérente, H(C1) doit être égale à (H(a0[1], b2[2], c3[3])= 2

 3

Ce n’est le cas  C1 n’est pas cohérente.

 1 1 1 1

o H(C2)= Max (H(a1), H(b3), H(c3)) = Max (0 3 2)= 3

 0 0 3 3

 1

Pour que C2 soit cohérente, H(C2) doit être égale à (H(a1[1], b3[2], c3[3])= 3

 3

Elle est égale  C2 est cohérente.

 a1 a2 a3 a4 a5

 1 2 3 4 5

 0 0 2 2 3

 0 1 3 3 3

 b1 b2 b3 b4

 1 1 1 4

 1 2 3 4

 0 0 0 3

I

J

K

 c1 c2 c3

 0 1 1

 0 2 2

 1 2 3

5- Pour les coupures consistantes, donc l’état global correspondant est consistant, les messages en

transit pour la coupure C2 et pour chaque canal sont :

La topologie est complète, étant donné que les messages s’échangent entre tous les processus.

Au niveau de I :

Etat du canal qui le relie avec J est : {(b3, a5)}

Etat du canal qui le relie avec K est : {(c1, a2) ; (c3,a3)}

Au niveau de J :

Etat du canal qui le relie avec I est : 

Etat du canal qui le relie avec K est : 

Au niveau de K :

Etat du canal qui le relie avec I est : 

Etat du canal qui le relie avec J est : 

Exercice 2 : (11 pts= 2.5 + 1 + 4.5 + 1 + 2)

a- Le principe de fonctionnement de l’algorithme :

Etant donné que la racine de l’arborescence est le processus serveur, un processus client est alors un

nœud qui possède un père sur la structure. La requête, qui porte sur un numéro de la ressource

critique désirée, est envoyée le long de la branche qui mène vers la racine. Pour cela, le processus

demandeur envoie cette requête à son père, celui-ci la transmis à son tour à son père et ainsi de suite

jusqu’à ce qu’elle arrive à la racine. Pour tracer le chemin de retour d’une requête, chaque processus

i (y compris le serveur) qui reçoit une requête d’un client k de l’un de ses fils j, met T[k, r]=j, où T

est un tableau local de taille N. Ceci veut dire : ‘’quand je reçois l’autorisation sur la requête du

client k de mon père pour la ressource r, je la lui envoie à travers j’’. En retour, l’autorisation

commence le parcours à partir de la racine. En général, quand un processus reçoit une autorisation

de son père pour une destination x, s’il est le destinataire il rentre en section critique pour la

ressource demandée, sinon il la transmit à son fils T[, r].

Remarque : On peut transporter dans la requête l’ensemble Z des nœuds traversés par la requête. Au

retour, pour envoyer la réponse sur le chemin du destinataire, celle-ci est envoyée à chaque fois au

nœud fils qui appartient à Z.

Quand le serveur reçoit une requête d’un nœud fils k sur une ressource r, si la file locale est vide (i.e.

la ressource est libre), il enfile la requête avec son estampille sur la file f(r) et envoie une

autorisation accompagnée de l’identité du nœud originaire de la requête et r au fils T[k, r], sinon il

se contente d’enfiler la requête en respectant l’ordre de Lamport.

Un processus qui sort de sa section critique pour une ressource r, véhicule un message de libération

accompagné du numéro r sur la branche qui le lie à la racine. Quand le serveur reçoit ce message, il

purge le premier élément de la file f(r) et si la file n’est toujours pas vide, il véhicule un message

d’autorisation sur la branche qui le lie au processus en tête de file.

b- Les différents messages à utiliser.

Trois messages sont utilisés :

Requête (k, r, NS) et Autorisation(k, r), Liberation (r) où k est l’identité du processus demandeur, r

est le numéro du service et NS est l’estampille de la requête.

c- Une solution distribuée à ce problème :

On suppose que la racine est de numéro racine.

Contexte de Pi

Const racinei= …. ; N=… ;// N : Nombre de processus du réseau

perei : entier ; /* déjà initialisé à père de i s’il existe, sinon à i

filsi : ensemble : /* déjà initialisé

Ti: tableau[1..N, 1..2] de entier ;

NSi : entier :=0 ;

Messages

Requête (k, r, NS) et Autorisation(k, r), Liberation (r) où k est l’identité du processus demandeur, r

est le numéro du service et NS est l’estampille de la requête.

A la demande de la ressource r :

Début

Si (i<>racinei) Alors NSi++ ; envoyer (requête (i, r, NSi) à perei

Fsi

Fin :

A la réception d’un message requête (k, r, NS) de j

Début

T[k, r] :=j ; NSi :=Max (NSi, NS) ;

Si (i<>racinei) Alors envoyer (requête (k, r, NS) à perei

 Sinon Si (f(r)=) Alors inserer (f, k, r, NS);envoyer(autorisation (k, r, NSi) à Ti[k, r]

 Sinon inserer (f, k, r, NS)

// insère k, NS dans f(r) en respectant l’ordre fifo selon NS

 Fsi

Fsi

Fin :

A la réception d’un message autorisation (k, r, NS) de j

Début

Si (i<>k) Alors envoyer(autorisation (k, r, NSi) à Ti[k, r]

 Sinon NSi :=Max (NSi, NS) ;<entrer en SC pour r>

Fsi

Fin :

A la sortie de la section critique de r

Début

envoyer (liberation (r)) à perei

Fin :

A la réception de liberation (r) de j

Début

Si (i<>racinei) Alors envoyer (liberation (r)) à perei

Sinon supprimer (f(r)) ;// Supprime l’élément en tête de f(r)

 Si(f(r)<>) Alors envoyer (autorisation (premier (f).client, premier (f(r).ress, NSi)

à Ti[premier (f).client]

Fin ;// la file f(r) est de format (client, ress, NS) où client est le nom du demandeur de ress

// d’estampille NS.

d- La complexité moyenne par requête :

Supposons que la profondeur maximale de l’arborescence est d. Sachant que la requête, son

autorisation et sa libération ensemble font 3d pas au maximum et au minimum 3 pas, la complexité

moyenne (3d+3)/2 messages.

e- Pour inclure le serveur comme client

La primitive de demande devient :

A la demande d’une ressource r

Début

NSi++ ;

envoyer (requête (i, r, NSi) à perei

// Si i=racinei, le messgae est envoyé au même processus car perei=i.

Fin ;

